Right Bol Loop 16.1.4.2 of order 16


0123456789101112131415
1032547698111013121514
2310675410119815141213
3201764511108914151312
4567102312131415891110
5476013213121514981011
6754321015141213101189
7645230114151312111098
8910111312141510235476
9811101213151401324567
1011981415121332107645
1110891514131223016754
1213151489111054761032
1312141598101145670123
1415121311109867542310
1514131210118976453201

Centre:   0   1

Centrum:   0   1   2   3

Nucleus:   0   1

Left Nucleus:   0   1   2   3

Middle Nucleus:   0   1

Right Nucleus:   0   1


Comm(L):   This graph has as its 7 vertices the nontrivial cosets of the centre. Edges represent non-commuting cosets.


1 Element of order 1:   0

1 Element of order 2:   1

14 Elements of order 4:   2   3   4   5   6   7   8   9   10   11   12   13   14   15

Commutator Subloop:   0   1

Associator Subloop:   0   1

2 Conjugacy Classes of size 1:

7 Conjugacy Classes of size 2:

Automorphic Inverse Property:   FAILS.   (2-1)(5-1) neq (2*5)-1

Al Property:   HOLDS (i.e. every left inner mapping La,b is an automorphism)

Ar Property:   HOLDS (i.e. every right inner mapping Ra,b is an automorphism)

Right (Left, Full) Mult Group Orders:   64 (128, 512)


/ revised October, 2001