Right Bol Loop 16.1.2.32 of order 16


0123456789101112131415
1032547698111013121514
2310671110458914151213
3201761011549815141312
4567101213321415891011
5476011312231514981110
6754321014151312111098
7645230115141213101189
8910111213151410325467
9811101312141501234576
1011981514231213106754
1110891415321312017645
1213151498541110671032
1312141589451011760123
1415121310118976543210
1514131211109867452301

Centre:   0   1

Centrum:   0   1

Nucleus:   0   1

Left Nucleus:   0   1   8   9

Middle Nucleus:   0   1

Right Nucleus:   0   1


Comm(L):   This graph has as its 7 vertices the nontrivial cosets of the centre. Edges represent non-commuting cosets. Here we print (in reverse video) the complementary graph, in which edges represent commuting cosets.


1 Element of order 1:   0

1 Element of order 2:   1

14 Elements of order 4:   2   3   4   5   6   7   8   9   10   11   12   13   14   15

Commutator Subloop:   0   1   14   15

Associator Subloop:   0   1   14   15

2 Conjugacy Classes of size 1:

1 Conjugacy Class of size 2:

3 Conjugacy Classes of size 4:

Automorphic Inverse Property:   FAILS.   (2-1)(5-1) neq (2*5)-1

Al Property:   FAILS. The left inner mapping L2,2 = (4,10,5,11)(6,8,7,9)(12,13)(14,15) is not an automorphism.   L2,2(4*2) neq L2,2(4)*L2,2(2)

Ar Property:   HOLDS (i.e. every right inner mapping Ra,b is an automorphism)

Right (Left, Full) Mult Group Orders:   64 (1024, 4096)


/ revised October, 2001