0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
1 | 0 | 3 | 2 | 5 | 4 | 7 | 6 | 9 | 8 | 11 | 10 | 13 | 12 | 15 | 14 |
2 | 3 | 1 | 0 | 6 | 7 | 11 | 10 | 4 | 5 | 8 | 9 | 14 | 15 | 12 | 13 |
3 | 2 | 0 | 1 | 7 | 6 | 10 | 11 | 5 | 4 | 9 | 8 | 15 | 14 | 13 | 12 |
4 | 5 | 6 | 7 | 1 | 0 | 12 | 13 | 3 | 2 | 14 | 15 | 8 | 9 | 10 | 11 |
5 | 4 | 7 | 6 | 0 | 1 | 13 | 12 | 2 | 3 | 15 | 14 | 9 | 8 | 11 | 10 |
6 | 7 | 5 | 4 | 3 | 2 | 1 | 0 | 14 | 15 | 13 | 12 | 11 | 10 | 9 | 8 |
7 | 6 | 4 | 5 | 2 | 3 | 0 | 1 | 15 | 14 | 12 | 13 | 10 | 11 | 8 | 9 |
8 | 9 | 10 | 11 | 12 | 13 | 15 | 14 | 1 | 0 | 3 | 2 | 5 | 4 | 6 | 7 |
9 | 8 | 11 | 10 | 13 | 12 | 14 | 15 | 0 | 1 | 2 | 3 | 4 | 5 | 7 | 6 |
10 | 11 | 9 | 8 | 15 | 14 | 2 | 3 | 12 | 13 | 1 | 0 | 6 | 7 | 5 | 4 |
11 | 10 | 8 | 9 | 14 | 15 | 3 | 2 | 13 | 12 | 0 | 1 | 7 | 6 | 4 | 5 |
12 | 13 | 15 | 14 | 9 | 8 | 5 | 4 | 11 | 10 | 6 | 7 | 1 | 0 | 3 | 2 |
13 | 12 | 14 | 15 | 8 | 9 | 4 | 5 | 10 | 11 | 7 | 6 | 0 | 1 | 2 | 3 |
14 | 15 | 12 | 13 | 10 | 11 | 8 | 9 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 6 | 7 | 4 | 5 | 2 | 3 | 0 | 1 |
Centre: 0 1
Centrum: 0 1
Nucleus: 0 1
Left Nucleus: 0 1 8 9
Middle Nucleus: 0 1
Right Nucleus: 0 1
1 Element of order 1: 0
1 Element of order 2: 1
14 Elements of order 4: 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Commutator Subloop: 0 1 14 15
Associator Subloop: 0 1 14 15
2 Conjugacy Classes of size 1:
1 Conjugacy Class of size 2:
3 Conjugacy Classes of size 4:
Automorphic Inverse Property: FAILS. (2-1)(5-1) neq (2*5)-1
Al Property: FAILS. The left inner mapping L2,2 = (4,10,5,11)(6,8,7,9)(12,13)(14,15) is not an automorphism. L2,2(4*2) neq L2,2(4)*L2,2(2)
Ar Property: HOLDS (i.e. every right inner mapping Ra,b is an automorphism)
Right (Left, Full) Mult Group Orders: 64 (1024, 4096)