Right Bol Loop 16.1.2.3 of order 16


0123456789101112131415
1250367498141315101112
2561074314119121081513
3014725611141581391210
4307612513101291115814
5672143010138151412911
6745230115121110914138
7436501212151314811109
8101312149151163715420
9151113101412874602531
1013981215111436240715
1114121598101350426173
1281014111391512064357
1391510811141221357604
1412811151013947531062
1511149131281005173246

Centre:   0   6

Centrum:   0   6

Nucleus:   0   6

Left Nucleus:   0   6   8   15

Middle Nucleus:   0   6

Right Nucleus:   0   6


Comm(L):   This graph has as its 7 vertices the nontrivial cosets of the centre. Edges represent non-commuting cosets. Here we print (in reverse video) the complementary graph, in which edges represent commuting cosets.


1 Element of order 1:   0

1 Element of order 2:   6

6 Elements of order 4:   2   4   8   13   14   15

8 Elements of order 8:   1   3   5   7   9   10   11   12

Commutator Subloop:   0   2   4   6

Associator Subloop:   0   2   4   6

2 Conjugacy Classes of size 1:

1 Conjugacy Class of size 2:

3 Conjugacy Classes of size 4:

Automorphic Inverse Property:   FAILS.   (1-1)(9-1) neq (1*9)-1

Al Property:   FAILS. The left inner mapping L1,1 = (8,13)(9,10)(11,12)(14,15) is not an automorphism.   L1,1(1*9) neq L1,1(1)*L1,1(9)

Ar Property:   HOLDS (i.e. every right inner mapping Ra,b is an automorphism)

Right (Left, Full) Mult Group Orders:   64 (1024, 4096)


/ revised October, 2001