Right Bol Loop 16.1.2.2 of order 16


0123456789101112131415
1250367491513121110814
2561074313101489151211
3014725610111598141312
4307612511129151481013
5672143012138141591110
6745230115141213101198
7436501214811101312159
8101191314151265741230
9810131211141574056321
1011148915121350214763
1114151081213927365014
1213915148101136472105
1398121510111441503672
1415121110139812630547
1512131411981003127456

Centre:   0   6

Centrum:   0   6

Nucleus:   0   6

Left Nucleus:   0   6   8   15

Middle Nucleus:   0   6

Right Nucleus:   0   6


Comm(L):   This graph has as its 7 vertices the nontrivial cosets of the centre. Edges represent non-commuting cosets. Here we print (in reverse video) the complementary graph, in which edges represent commuting cosets.


1 Element of order 1:   0

1 Element of order 2:   6

6 Elements of order 4:   2   4   8   11   13   15

8 Elements of order 8:   1   3   5   7   9   10   12   14

Commutator Subloop:   0   2   4   6

Associator Subloop:   0   2   4   6

2 Conjugacy Classes of size 1:

1 Conjugacy Class of size 2:

3 Conjugacy Classes of size 4:

Automorphic Inverse Property:   FAILS.   (1-1)(9-1) neq (1*9)-1

Al Property:   FAILS. The left inner mapping L1,1 = (8,13)(9,10)(11,15)(12,14) is not an automorphism.   L1,1(1*9) neq L1,1(1)*L1,1(9)

Ar Property:   HOLDS (i.e. every right inner mapping Ra,b is an automorphism)

Right (Left, Full) Mult Group Orders:   64 (1024, 4096)


/ revised October, 2001