0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
1 | 0 | 3 | 2 | 5 | 4 | 7 | 6 | 9 | 8 | 11 | 10 | 15 | 14 | 13 | 12 |
2 | 4 | 0 | 1 | 6 | 7 | 3 | 10 | 5 | 11 | 8 | 9 | 13 | 12 | 15 | 14 |
3 | 5 | 1 | 0 | 7 | 6 | 2 | 11 | 4 | 10 | 9 | 8 | 14 | 15 | 12 | 13 |
4 | 2 | 6 | 7 | 0 | 1 | 5 | 12 | 3 | 15 | 13 | 14 | 8 | 10 | 11 | 9 |
5 | 3 | 7 | 6 | 1 | 0 | 4 | 15 | 2 | 12 | 14 | 13 | 9 | 11 | 10 | 8 |
6 | 7 | 4 | 5 | 2 | 3 | 0 | 1 | 13 | 14 | 12 | 15 | 10 | 8 | 9 | 11 |
7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | 14 | 13 | 15 | 12 | 11 | 9 | 8 | 10 |
8 | 9 | 10 | 11 | 12 | 15 | 13 | 14 | 0 | 1 | 2 | 3 | 4 | 6 | 7 | 5 |
9 | 8 | 11 | 10 | 15 | 12 | 14 | 13 | 1 | 0 | 3 | 2 | 5 | 7 | 6 | 4 |
10 | 12 | 8 | 9 | 13 | 14 | 11 | 2 | 15 | 3 | 0 | 1 | 6 | 4 | 5 | 7 |
11 | 15 | 9 | 8 | 14 | 13 | 10 | 3 | 12 | 2 | 1 | 0 | 7 | 5 | 4 | 6 |
12 | 10 | 13 | 14 | 8 | 9 | 15 | 4 | 11 | 5 | 6 | 7 | 0 | 2 | 3 | 1 |
13 | 14 | 12 | 15 | 10 | 11 | 8 | 9 | 6 | 7 | 4 | 5 | 2 | 0 | 1 | 3 |
14 | 13 | 15 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 1 | 0 | 2 |
15 | 11 | 14 | 13 | 9 | 8 | 12 | 5 | 10 | 4 | 7 | 6 | 1 | 3 | 2 | 0 |
Centre: 0
Centrum: 0 9 13 14
Nucleus: 0
Left Nucleus: 0 1 6 7 8 9 13 14
Middle Nucleus: 0
Right Nucleus: 0
1 Element of order 1: 0
15 Elements of order 2: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Commutator Subloop: 0 7 8 14
Associator Subloop: 0 7 8 14
1 Conjugacy Class of size 1:
1 Conjugacy Class of size 3:
3 Conjugacy Classes of size 4:
Automorphic Inverse Property: HOLDS
Al Property: FAILS. The left inner mapping L1,2 = (2,5)(3,4)(6,13,9)(7,8,14)(10,15)(11,12) is not an automorphism. L1,2(1*6) neq L1,2(1)*L1,2(6)
Ar Property: HOLDS (i.e. every right inner mapping Ra,b is an automorphism)
Right (Left, Full) Mult Group Orders: 64 (18432, 36864)