0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
1 | 0 | 3 | 2 | 5 | 4 | 7 | 6 | 9 | 8 | 11 | 10 | 13 | 12 | 15 | 14 |
2 | 3 | 0 | 1 | 6 | 7 | 4 | 5 | 10 | 11 | 8 | 9 | 14 | 15 | 12 | 13 |
3 | 2 | 1 | 0 | 7 | 6 | 5 | 4 | 11 | 10 | 9 | 8 | 15 | 14 | 13 | 12 |
4 | 5 | 6 | 7 | 0 | 1 | 2 | 3 | 12 | 13 | 14 | 15 | 8 | 9 | 10 | 11 |
5 | 4 | 7 | 6 | 1 | 0 | 3 | 2 | 13 | 12 | 15 | 14 | 9 | 8 | 11 | 10 |
6 | 7 | 4 | 5 | 2 | 3 | 0 | 1 | 14 | 15 | 12 | 13 | 10 | 11 | 8 | 9 |
7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 |
8 | 10 | 9 | 12 | 11 | 13 | 15 | 14 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
9 | 11 | 8 | 13 | 10 | 12 | 14 | 15 | 1 | 0 | 3 | 2 | 5 | 4 | 7 | 6 |
10 | 8 | 11 | 14 | 9 | 15 | 13 | 12 | 2 | 3 | 0 | 1 | 6 | 7 | 4 | 5 |
11 | 9 | 10 | 15 | 8 | 14 | 12 | 13 | 3 | 2 | 1 | 0 | 7 | 6 | 5 | 4 |
12 | 14 | 13 | 8 | 15 | 9 | 11 | 10 | 4 | 5 | 6 | 7 | 0 | 1 | 2 | 3 |
13 | 15 | 12 | 9 | 14 | 8 | 10 | 11 | 5 | 4 | 7 | 6 | 1 | 0 | 3 | 2 |
14 | 12 | 15 | 10 | 13 | 11 | 9 | 8 | 6 | 7 | 4 | 5 | 2 | 3 | 0 | 1 |
15 | 13 | 14 | 11 | 12 | 10 | 8 | 9 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
Centre: 0
Centrum: 0 5
Nucleus: 0
Left Nucleus: 0 1 2 3 4 5 6 7
Middle Nucleus: 0
Right Nucleus: 0
1 Element of order 1: 0
15 Elements of order 2: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Commutator Subloop: 0 2 4 6
Associator Subloop: 0 1 2 3 4 5 6 7
1 Conjugacy Class of size 1:
1 Conjugacy Class of size 7:
1 Conjugacy Class of size 8:
Automorphic Inverse Property: HOLDS
Al Property: FAILS. The left inner mapping L1,8 = (2,7,5)(3,4,6)(8,11)(9,10)(12,15)(13,14) is not an automorphism. L1,8(1*2) neq L1,8(1)*L1,8(2)
Ar Property: HOLDS (i.e. every right inner mapping Ra,b is an automorphism)
Right (Left, Full) Mult Group Orders: 128 (1625702400, 3251404800)