Right Bol Loop 16.15.2.13 of order 16


0123456789101112131415
1032547691512131110814
2401673510128151491311
3510762412119148151013
4267015313101491581112
5376104211131589141210
6745230114813121011159
7654321015141110131298
8911121310141506253417
9813101112151410345276
1013159148121124076135
1112814915131053701642
1211148159101332160754
1310915814111245617023
1415121110138967432501
1514101312119871524360

Centre:   0   7

Centrum:   0   7

Nucleus:   0   7

Left Nucleus:   0   7

Middle Nucleus:   0   7

Right Nucleus:   0   7


Comm(L):   This graph has as its 7 vertices the nontrivial cosets of the centre. Edges represent non-commuting cosets. Here we print (in reverse video) the complementary graph, in which edges represent commuting cosets.


1 Element of order 1:   0

15 Elements of order 2:   1   2   3   4   5   6   7   8   9   10   11   12   13   14   15

Commutator Subloop:   0   7

Associator Subloop:   0   7

2 Conjugacy Classes of size 1:

7 Conjugacy Classes of size 2:

Automorphic Inverse Property:   HOLDS

Al Property:   HOLDS (i.e. every left inner mapping La,b is an automorphism)

Ar Property:   HOLDS (i.e. every right inner mapping Ra,b is an automorphism)

Right (Left, Full) Mult Group Orders:   128 (128, 1024)


/ revised October, 2001