Right Bol Loop 16.15.2.1 of order 16


0123456789101112131415
1032674591211141510138
2301547610118914151213
3210765411149121381510
4657021313101581112914
5746203115813109141112
6475130214131215109811
7564312012151413811109
8912111315141005247361
9815101412131110325647
1011149151312824056173
1110138121415932104756
1215813119101471630425
1314111281091546573012
1413101591181263712504
1512914108111357461230

Centre:   0   6

Centrum:   0   6

Nucleus:   0   6

Left Nucleus:   0   2   6   7

Middle Nucleus:   0   6

Right Nucleus:   0   6


Comm(L):   This graph has as its 7 vertices the nontrivial cosets of the centre. Edges represent non-commuting cosets. Here we print (in reverse video) the complementary graph, in which edges represent commuting cosets.


1 Element of order 1:   0

15 Elements of order 2:   1   2   3   4   5   6   7   8   9   10   11   12   13   14   15

Commutator Subloop:   0   2   6   7

Associator Subloop:   0   2   6   7

2 Conjugacy Classes of size 1:

1 Conjugacy Class of size 2:

3 Conjugacy Classes of size 4:

Automorphic Inverse Property:   HOLDS

Al Property:   FAILS. The left inner mapping L1,8 = (2,7)(3,5)(8,12)(9,15)(10,14)(11,13) is not an automorphism.   L1,8(2*8) neq L1,8(2)*L1,8(8)

Ar Property:   HOLDS (i.e. every right inner mapping Ra,b is an automorphism)

Right (Left, Full) Mult Group Orders:   64 (4096, 16384)


/ revised October, 2001