Right Bol Loop 16.11.6.0 of order 16


0123456789101112131415
1032547698111015141312
2301674510118913121514
3210765411109814151213
4567012312151314810119
5476103215121413911108
6745230113141215108911
7654321014131512119810
8911101215131401235764
9810111512141310324675
1011981314121523017546
1110891413151232106457
1215141389101145671320
1314151210118967453102
1413121511109876542013
1512131498111054760231

Centre:   0   1

Centrum:   0   1   4   5   6   7

Nucleus:   0   1

Left Nucleus:   0   1   2   3   4   5   6   7

Middle Nucleus:   0   1

Right Nucleus:   0   1


Comm(L):   This graph has as its 7 vertices the nontrivial cosets of the centre. Edges represent non-commuting cosets.


1 Element of order 1:   0

11 Elements of order 2:   1   2   3   4   5   6   7   8   9   10   11

4 Elements of order 4:   12   13   14   15

Commutator Subloop:   0   1

Associator Subloop:   0   1

2 Conjugacy Classes of size 1:

7 Conjugacy Classes of size 2:

Automorphic Inverse Property:   FAILS.   (4-1)(9-1) neq (4*9)-1

Al Property:   FAILS. The left inner mapping L2,8 = (4,5)(6,7)(8,9)(10,11)(12,15)(13,14) is not an automorphism.   L2,8(4*8) neq L2,8(4)*L2,8(8)

Ar Property:   HOLDS (i.e. every right inner mapping Ra,b is an automorphism)

Right (Left, Full) Mult Group Orders:   32 (1024, 2048)


/ revised October, 2001