Right Bol Loop 16.11.4.7 of order 16


0123456789101112131415
1032547691481215111013
2406173511131281091514
3517062412111598141310
4260715313151110148129
5371604215121314910118
6745230110814131115912
7654321014109151312811
8101113121591406124375
9141215111381010732564
1081311151214967045213
1112891014131523401657
1211981410151335217046
1315101489111242560731
1491512131110871653402
1513141098121154376120

Centre:   0   7

Centrum:   0   7   11   15

Nucleus:   0   2   5   7

Left Nucleus:   0   2   5   7   8   11   14   15

Middle Nucleus:   0   2   5   7

Right Nucleus:   0   2   5   7


Comm(L):   This graph has as its 7 vertices the nontrivial cosets of the centre. Edges represent non-commuting cosets. Here we print (in reverse video) the complementary graph, in which edges represent commuting cosets.


1 Element of order 1:   0

11 Elements of order 2:   1   2   5   6   7   8   9   10   11   14   15

4 Elements of order 4:   3   4   12   13

Commutator Subloop:   0   7

Associator Subloop:   0   7

2 Conjugacy Classes of size 1:

7 Conjugacy Classes of size 2:

Automorphic Inverse Property:   FAILS.   (1-1)(3-1) neq (1*3)-1

Al Property:   HOLDS (i.e. every left inner mapping La,b is an automorphism)

Ar Property:   HOLDS (i.e. every right inner mapping Ra,b is an automorphism)

Right (Left, Full) Mult Group Orders:   32 (64, 128)


/ revised October, 2001