Right Bol Loop 16.11.4.5 of order 16


0123456789101112131415
1032765491411158101213
2301547610118913121514
3210674511159141081312
4756023115131412119108
5647201314121513911810
6574310212813101415911
7465132013101281514119
8121013151411946571320
9141115131210870625431
1013812141591157463102
1115914121381062704513
1281310119151435140276
1310128911141514352067
1491511108131221036745
1511149810121303217654

Centre:   0   2

Centrum:   0   2   4   5

Nucleus:   0   2

Left Nucleus:   0   2   4   5

Middle Nucleus:   0   2

Right Nucleus:   0   2


Comm(L):   This graph has as its 7 vertices the nontrivial cosets of the centre. Edges represent non-commuting cosets.


1 Element of order 1:   0

11 Elements of order 2:   1   2   3   4   5   6   7   9   11   12   13

4 Elements of order 4:   8   10   14   15

Commutator Subloop:   0   2   4   5

Associator Subloop:   0   2   4   5

2 Conjugacy Classes of size 1:

1 Conjugacy Class of size 2:

3 Conjugacy Classes of size 4:

Automorphic Inverse Property:   FAILS.   (1-1)(9-1) neq (1*9)-1

Al Property:   FAILS. The left inner mapping L1,8 = (4,5)(6,7)(8,15)(9,13)(10,14)(11,12) is not an automorphism.   L1,8(4*8) neq L1,8(4)*L1,8(8)

Ar Property:   FAILS. The right inner mapping R1,8 = (1,6)(3,7)(8,15)(9,11)(10,14)(12,13) is not an automorphism.   R1,8(8*1) neq R1,8(8)*R1,8(1)

Right (Left, Full) Mult Group Orders:   64 (4096, 16384)


/ revised October, 2001