Right Bol Loop 16.11.2.42 of order 16


0123456789101112131415
1032547698131211101514
2301674510111415891213
3210765411109815141312
4567012313121514981110
5476103212138914151011
6745230115141110131298
7654321014151213101189
8912131110151401245376
9813121011141510423567
1011141598131223710654
1110151489121332176045
1213891514111054067123
1312981415101145601732
1415101113129876532401
1514111012138967354210

Centre:   0   7

Centrum:   0   7

Nucleus:   0   7

Left Nucleus:   0   3   4   7

Middle Nucleus:   0   7

Right Nucleus:   0   7


Comm(L):   This graph has as its 7 vertices the nontrivial cosets of the centre. Edges represent non-commuting cosets.


1 Element of order 1:   0

11 Elements of order 2:   1   2   3   4   5   6   7   8   9   14   15

4 Elements of order 4:   10   11   12   13

Commutator Subloop:   0   7

Associator Subloop:   0   7

2 Conjugacy Classes of size 1:

7 Conjugacy Classes of size 2:

Automorphic Inverse Property:   FAILS.   (2-1)(9-1) neq (2*9)-1

Al Property:   FAILS. The left inner mapping L1,8 = (10,12)(11,13) is not an automorphism.   L1,8(2*8) neq L1,8(2)*L1,8(8)

Ar Property:   HOLDS (i.e. every right inner mapping Ra,b is an automorphism)

Right (Left, Full) Mult Group Orders:   64 (1024, 2048)


/ revised October, 2001