0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
1 | 0 | 3 | 6 | 7 | 2 | 5 | 13 | 10 | 11 | 8 | 9 | 15 | 14 | 4 | 12 |
2 | 3 | 0 | 9 | 1 | 8 | 12 | 10 | 5 | 4 | 7 | 6 | 14 | 15 | 11 | 13 |
3 | 2 | 1 | 10 | 12 | 11 | 15 | 8 | 6 | 14 | 13 | 5 | 4 | 0 | 9 | 7 |
4 | 14 | 9 | 12 | 10 | 0 | 8 | 15 | 7 | 2 | 5 | 13 | 3 | 11 | 1 | 6 |
5 | 6 | 15 | 11 | 0 | 10 | 1 | 9 | 2 | 7 | 4 | 3 | 13 | 12 | 8 | 14 |
6 | 5 | 12 | 8 | 15 | 9 | 0 | 11 | 3 | 13 | 14 | 2 | 7 | 1 | 10 | 4 |
7 | 13 | 10 | 15 | 8 | 1 | 11 | 0 | 4 | 5 | 2 | 14 | 6 | 9 | 12 | 3 |
8 | 10 | 13 | 14 | 2 | 7 | 4 | 3 | 0 | 12 | 1 | 15 | 9 | 6 | 5 | 11 |
9 | 11 | 4 | 7 | 6 | 14 | 13 | 5 | 12 | 0 | 15 | 1 | 8 | 2 | 3 | 10 |
10 | 8 | 7 | 13 | 5 | 4 | 14 | 2 | 1 | 15 | 0 | 12 | 11 | 3 | 6 | 9 |
11 | 9 | 14 | 4 | 3 | 13 | 7 | 6 | 15 | 1 | 12 | 0 | 10 | 5 | 2 | 8 |
12 | 15 | 6 | 5 | 13 | 3 | 2 | 14 | 9 | 8 | 11 | 10 | 0 | 4 | 7 | 1 |
13 | 7 | 8 | 0 | 11 | 12 | 9 | 1 | 14 | 6 | 3 | 4 | 5 | 10 | 15 | 2 |
14 | 4 | 11 | 1 | 9 | 15 | 10 | 12 | 13 | 3 | 6 | 7 | 2 | 8 | 0 | 5 |
15 | 12 | 5 | 2 | 14 | 6 | 3 | 4 | 11 | 10 | 9 | 8 | 1 | 7 | 13 | 0 |
Centre: 0
Centrum: 0 10
Nucleus: 0
Left Nucleus: 0 10 11 12
Middle Nucleus: 0
Right Nucleus: 0
1 Element of order 1: 0
11 Elements of order 2: 1 2 6 7 8 9 10 11 12 14 15
4 Elements of order 4: 3 4 5 13
Commutator Subloop: 0 10 11 12
Associator Subloop: 0 10 11 12
1 Conjugacy Class of size 1:
1 Conjugacy Class of size 3:
3 Conjugacy Classes of size 4:
Automorphic Inverse Property: FAILS. (1-1)(3-1) neq (1*3)-1
Al Property: FAILS. The left inner mapping L1,2 = (2,14)(3,4)(5,13)(6,7)(8,15,9)(10,11,12) is not an automorphism. L1,2(1*8) neq L1,2(1)*L1,2(8)
Ar Property: FAILS. The right inner mapping R1,2 = (1,15)(2,14)(3,13)(4,5)(6,7)(8,9) is not an automorphism. R1,2(2*1) neq R1,2(2)*R1,2(1)
Right (Left, Full) Mult Group Orders: 128 (18432, 36864)