Right Bol Loop 16.11.2.265 of order 16


0123456789101112131415
1032765498111015141312
2301547610118914151213
3210674511109813121514
4756023115121314910118
5647201313141512118910
6574310214131215109811
7465132012151413811109
8121314151011947231560
9151413121110874320651
1014151213891156013472
1113121514981065102743
1281110914131510654327
1311891015121423476015
1410981112151332745106
1591011813141201567234

Centre:   0   4

Centrum:   0   4

Nucleus:   0   4

Left Nucleus:   0   1   2   3   4   5   6   7

Middle Nucleus:   0   4

Right Nucleus:   0   4


Comm(L):   This graph has as its 7 vertices the nontrivial cosets of the centre. Edges represent non-commuting cosets. Here we print (in reverse video) the complementary graph, in which edges represent commuting cosets.


1 Element of order 1:   0

11 Elements of order 2:   1   2   3   4   5   6   7   10   11   13   14

4 Elements of order 4:   8   9   12   15

Commutator Subloop:   0   4

Associator Subloop:   0   4

2 Conjugacy Classes of size 1:

7 Conjugacy Classes of size 2:

Automorphic Inverse Property:   FAILS.   (2-1)(9-1) neq (2*9)-1

Al Property:   FAILS. The left inner mapping L1,8 = (2,5)(3,6)(8,15)(9,12)(10,13)(11,14) is not an automorphism.   L1,8(2*8) neq L1,8(2)*L1,8(8)

Ar Property:   HOLDS (i.e. every right inner mapping Ra,b is an automorphism)

Right (Left, Full) Mult Group Orders:   32 (1024, 2048)


/ revised October, 2001