Right Bol Loop 16.11.2.26 of order 16


0123456789101112131415
1032765491511138141012
2301674510111512148913
3210547611131281091514
4765032115121314910118
5674301214109151312811
6547210313148911151210
7456123012814101511139
8121314151110947651230
9151413121011870524361
1014151213981165013472
1113121514891052146703
1281110913141514360527
1311891012151423475016
1410981115121336702145
1591011814131201237654

Centre:   0   4

Centrum:   0   4

Nucleus:   0   4

Left Nucleus:   0   4

Middle Nucleus:   0   4

Right Nucleus:   0   4


Comm(L):   This graph has as its 7 vertices the nontrivial cosets of the centre. Edges represent non-commuting cosets.


1 Element of order 1:   0

11 Elements of order 2:   1   2   3   4   5   6   7   9   10   12   13

4 Elements of order 4:   8   11   14   15

Commutator Subloop:   0   4

Associator Subloop:   0   4

2 Conjugacy Classes of size 1:

7 Conjugacy Classes of size 2:

Automorphic Inverse Property:   FAILS.   (1-1)(9-1) neq (1*9)-1

Al Property:   FAILS. The left inner mapping L1,8 = (2,6)(3,5)(8,15)(9,12)(10,13)(11,14) is not an automorphism.   L1,8(2*8) neq L1,8(2)*L1,8(8)

Ar Property:   HOLDS (i.e. every right inner mapping Ra,b is an automorphism)

Right (Left, Full) Mult Group Orders:   128 (1024, 2048)


/ revised October, 2001