Right Bol Loop 16.11.2.226 of order 16


0123456789101112131415
1032674591511138141012
2301547610111512148913
3210765411131281091514
4657021315121314910118
5746203113148911151210
6475130212814101511139
7564312014109151312811
8121011151391446571230
9151110121481360724351
1014891315111257013462
1113981412101572145603
1281413911151014350726
1311151210814923467015
1410121511913835602147
1591314810121101236574

Centre:   0   4

Centrum:   0   4

Nucleus:   0   4

Left Nucleus:   0   4

Middle Nucleus:   0   4

Right Nucleus:   0   4


Comm(L):   This graph has as its 7 vertices the nontrivial cosets of the centre. Edges represent non-commuting cosets.


1 Element of order 1:   0

11 Elements of order 2:   1   2   3   4   5   6   7   9   10   12   13

4 Elements of order 4:   8   11   14   15

Commutator Subloop:   0   4

Associator Subloop:   0   4

2 Conjugacy Classes of size 1:

7 Conjugacy Classes of size 2:

Automorphic Inverse Property:   FAILS.   (1-1)(9-1) neq (1*9)-1

Al Property:   FAILS. The left inner mapping L1,8 = (2,5)(3,7)(8,15)(9,12)(10,13)(11,14) is not an automorphism.   L1,8(2*8) neq L1,8(2)*L1,8(8)

Ar Property:   HOLDS (i.e. every right inner mapping Ra,b is an automorphism)

Right (Left, Full) Mult Group Orders:   128 (1024, 2048)


/ revised October, 2001