Right Bol Loop 16.11.2.163 of order 16


0123456789101112131415
1032547698111015141312
2301675410119814151213
3210764511108913121514
4576013212151413811109
5467102315121314910118
6754230113141215118910
7645321014131512109811
8911101215141301234765
9810111512131410325674
1011981314121523107456
1110891413151232016547
1215131489101145760231
1314121510119867453102
1413151211108976542013
1512141398111054671320

Centre:   0   1

Centrum:   0   1

Nucleus:   0   1

Left Nucleus:   0   1   4   5

Middle Nucleus:   0   1

Right Nucleus:   0   1


Comm(L):   This graph has as its 7 vertices the nontrivial cosets of the centre. Edges represent non-commuting cosets. Here we print (in reverse video) the complementary graph, in which edges represent commuting cosets.


1 Element of order 1:   0

11 Elements of order 2:   1   2   3   4   5   6   7   8   9   12   15

4 Elements of order 4:   10   11   13   14

Commutator Subloop:   0   1

Associator Subloop:   0   1

2 Conjugacy Classes of size 1:

7 Conjugacy Classes of size 2:

Automorphic Inverse Property:   FAILS.   (2-1)(9-1) neq (2*9)-1

Al Property:   FAILS. The left inner mapping L2,8 = (8,9)(10,11) is not an automorphism.   L2,8(4*8) neq L2,8(4)*L2,8(8)

Ar Property:   HOLDS (i.e. every right inner mapping Ra,b is an automorphism)

Right (Left, Full) Mult Group Orders:   64 (1024, 2048)


/ revised October, 2001