Right Bol Loop 16.11.2.109 of order 16


0123456789101112131415
1032547698111015141312
2301675410118913151214
3210764511109814121513
4576013212151314911108
5467102315121413810119
6754230114131512109811
7645321013141215118910
8911101215131401324765
9810111512141310235674
1011981413121523107546
1110891314151232016457
1215141389101145671320
1314151211108976543012
1413121510119867452103
1512131498111054760231

Centre:   0   1

Centrum:   0   1

Nucleus:   0   1

Left Nucleus:   0   1

Middle Nucleus:   0   1

Right Nucleus:   0   1


Comm(L):   This graph has as its 7 vertices the nontrivial cosets of the centre. Edges represent non-commuting cosets. Here we print (in reverse video) the complementary graph, in which edges represent commuting cosets.


1 Element of order 1:   0

11 Elements of order 2:   1   2   3   4   5   6   7   8   9   13   14

4 Elements of order 4:   10   11   12   15

Commutator Subloop:   0   1

Associator Subloop:   0   1

2 Conjugacy Classes of size 1:

7 Conjugacy Classes of size 2:

Automorphic Inverse Property:   FAILS.   (2-1)(9-1) neq (2*9)-1

Al Property:   FAILS. The left inner mapping L2,8 = (12,15)(13,14) is not an automorphism.   L2,8(4*8) neq L2,8(4)*L2,8(8)

Ar Property:   HOLDS (i.e. every right inner mapping Ra,b is an automorphism)

Right (Left, Full) Mult Group Orders:   128 (1024, 2048)


/ revised October, 2001