Right Bol Loop 16.11.2.105 of order 16


0123456789101112131415
1032547691481215111013
2406173511121314109158
3517062412151110814139
4260715313111591481210
5371604215131289101114
6745230110814131115912
7654321014109151312811
8101112131591476153402
9141211151381060745213
1081315111214917032564
1112810914131554306127
1211914810151342510736
1315108149111235267041
1491513121110801624375
1513149108121123471650

Centre:   0   7

Centrum:   0   7

Nucleus:   0   7

Left Nucleus:   0   7

Middle Nucleus:   0   7

Right Nucleus:   0   7


Comm(L):   This graph has as its 7 vertices the nontrivial cosets of the centre. Edges represent non-commuting cosets. Here we print (in reverse video) the complementary graph, in which edges represent commuting cosets.


1 Element of order 1:   0

11 Elements of order 2:   1   2   5   6   7   9   10   11   12   13   15

4 Elements of order 4:   3   4   8   14

Commutator Subloop:   0   7

Associator Subloop:   0   7

2 Conjugacy Classes of size 1:

7 Conjugacy Classes of size 2:

Automorphic Inverse Property:   FAILS.   (1-1)(3-1) neq (1*3)-1

Al Property:   HOLDS (i.e. every left inner mapping La,b is an automorphism)

Ar Property:   HOLDS (i.e. every right inner mapping Ra,b is an automorphism)

Right (Left, Full) Mult Group Orders:   128 (128, 1024)


/ revised October, 2001