Right Bol Loop 16.11.2.0 of order 16


0123456789101112131415
1032547698111015141312
2301674510118913121514
3210765411109814151213
4567012312151314911108
5476103215121413810119
6745230113141215119810
7654321014131512108911
8911101314121501234675
9810111413151210325764
1011981215131423016457
1110891512141332107546
1215141310118945671320
1314151289101167453102
1413121598111076542013
1512131411109854760231

Centre:   0   1

Centrum:   0   1

Nucleus:   0   1

Left Nucleus:   0   1   2   3

Middle Nucleus:   0   1

Right Nucleus:   0   1


Comm(L):   This graph has as its 7 vertices the nontrivial cosets of the centre. Edges represent non-commuting cosets. Here we print (in reverse video) the complementary graph, in which edges represent commuting cosets.


1 Element of order 1:   0

11 Elements of order 2:   1   2   3   4   5   6   7   8   9   10   11

4 Elements of order 4:   12   13   14   15

Commutator Subloop:   0   1   2   3

Associator Subloop:   0   1

2 Conjugacy Classes of size 1:

1 Conjugacy Class of size 2:

3 Conjugacy Classes of size 4:

Automorphic Inverse Property:   FAILS.   (4-1)(9-1) neq (4*9)-1

Al Property:   FAILS. The left inner mapping L2,8 = (4,5)(6,7)(8,9)(10,11)(12,15)(13,14) is not an automorphism.   L2,8(4*8) neq L2,8(4)*L2,8(8)

Ar Property:   HOLDS (i.e. every right inner mapping Ra,b is an automorphism)

Right (Left, Full) Mult Group Orders:   64 (1024, 4096)


/ revised October, 2001