
Counting Walks (Handout April 22, 2013)

We count the number of walks of length n between any two vertices in a graph.

Consider the following map with four land masses (labeled 1, 2, 3 and 4) and five bridges

(not labeled). For each i, j ∈ [4], denote by wn(i, j) the number of walks of length from

land mass i to land mass j, where the length of a walk is the number of bridges crossed

during the walk. A table of values of w2(i, j), the number of walks of length 2 from vertex

i to vertex j, is shown:
w2(i, j)

We represent this map using the graph G whose vertices represent land masses, and whose

edges represent bridges:

so that wn(i, j) is the number of walks of length n from vertex i to vertex j in G. The

number of walks of length n in a graph G is simply expressed using matrix arithmetic, as

we know explain.

Let G be a graph on n vertices. We may assume that the vertices are indexed using

the elements of [n] = {1, 2, 3, . . . , n}. The adjacency matrix of G is the n×n matrix whose

(i, j)-entry is

aij = number of edges from vertex i to vertex j.

In a simple graph, where no loops or multiple edges are allowed, we have aij = 0 or 1, and

aii = 0; but for our present purposes, such a restriction is not needed. A walk of length n

in G from vertex v to vertex w, is a sequence of n edges, starting with an edge from vertex

v0 = v to some vertex v1, followed by an edge from v1 to a vertex v2, etc., and ending with
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an edge from vertex vn−1 to vertex vn = w. In a walk, repeated vertices and repeated

edges are permitted (compare with a trail , where vertices may be repeated but not edges).

Theorem 1. The number wn(i, j) of walks of length n from vertex i to vertex j in

a graph G, is the (i, j)-entry of An where A is the incidence matrix of G.

The following MAPLE code demonstrates using our graph G above, where we first enter

the adjacency matrix A and then computes A2 and A3:

Note that the matrix A2 yields our table of values of w2(i, j) above; and the number of

walks of length 3 from vertex 1 to vertex 4, say, is w3(2, 4) = 7, the (2, 4)-entry of A3.

To see why this works, consider first the case n = 2. The number of walks of length

2 from vertex i to vertex j is

w2(i, j) =
∑

k∈[n]

(number of edges
from i to k

)(number of edges
from k to j

)

=
∑

k∈[n]

aikakj

= the (i, j)-entry of A2

by the definition of matrix multiplication. Similarly for arbitrary n, the number of walks
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of length n from vertex i to vertex j is

wn(i, j) =
∑

v1,v2,...,vn−1∈[n]

(number of edges
from i to v1

)(number of edges
from v1 to v2

)

· · ·
(number of edges

from vn−1 to j

)

=
∑

v1,v2,∈[n]

aiv1
av1v2

av2v3
· · · avn−1j

= the (i, j)-entry of An

which proves Theorem 1.

For each pair of vertices (i, j), we can compute as many terms as desired of the

sequence w0(i, j), w1(i, j), w2(i, j), w3(i, j), . . . by ‘simply’ taking successive powers of the

adjacency matrix A, then reading off the (i, j) entry. Better yet, we can explicitly obtain

the (ordinary) generating function for this sequence,

W (x) = Wij(x) =
∑

n≥0

wn(i, j)xn = w0(i, j) + w1(i, j)x + w2(i, j)x
2 + w3(i, j)x

3 + · · · ,

sometimes known as the walk generating function.

Theorem 2. The generating function Wij(x) for wn(i, j) equals the (i, j)-entry of

(I − xA)−1 .

Proof. By direct expansion we see that

(I − xA)(I + xA + x2A2 + x3A3 + x4A4 + · · ·)

= I − xA + xA − x2A2 + x2A2 − x3A3 − x4A4 + x4A4 − · · ·

= I,

so that

(I − xA)−1 = I + xA + x2A2 + x3A3 + x4A4 + · · · .

The (i, j)-entry of this matrix is
∑

n≥0 xnwn(i, j) = Wij(x).

In our original example, the generating function for the number of walks of length n

from vertex i to vertex j is the (i, j)-entry of

(

I − xA
)−1

=
1

d(x)







1 − 5x2 x(1 + x) 2x2(1 + x) x(1 + x − 4x2)
x(1 + x) 1 − x2 2x(1 − x2) x(1 + x)

2x2(1 + x) 2x(1 − x2) (1 + x2)(1 − 2x) 2x2(1 + x)
x(1 + x − 4x2) x(1 + x) 2x2(1 + x) 1 − 5x2







where the common denominator d(x) = (1 + x)(1 − x − 6x2 + 4x3). In particular
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W13(x) = 2x2 + 2x3 + 14x4 + 18x5 + 94x6 + 146x7 + 638x8 + 1138x9 + 4382x10 + · · · ,

so the number of walks of length n from vertex 1 to vertex 3 is given by

0, 0, 2, 2, 14, 18, 94, 146, 638, 1138, 4382, . . .

for n = 0, 1, 2, 3, . . .. All these computations are demonstrated in the MAPLE session

This concludes the solution of the 4-part problem Will solved in the 1997 film Good

Will Hunting.
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