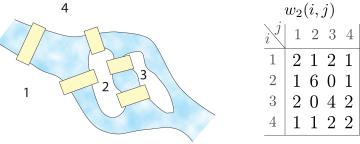


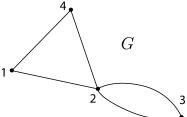
Counting Walks (Handout April 22, 2013)

We count the number of walks of length n between any two vertices in a graph.

Consider the following map with four land masses (labeled 1, 2, 3 and 4) and five bridges (not labeled). For each $i, j \in [4]$, denote by $w_n(i, j)$ the number of walks of length from land mass i to land mass j, where the *length* of a walk is the number of bridges crossed during the walk. A table of values of $w_2(i, j)$, the number of walks of length 2 from vertex i to vertex j, is shown:



We represent this map using the graph G whose vertices represent land masses, and whose edges represent bridges:



so that $w_n(i, j)$ is the number of walks of length n from vertex i to vertex j in G. The number of walks of length n in a graph G is simply expressed using matrix arithmetic, as we know explain.

Let G be a graph on n vertices. We may assume that the vertices are indexed using the elements of $[n] = \{1, 2, 3, ..., n\}$. The *adjacency matrix* of G is the $n \times n$ matrix whose (i, j)-entry is

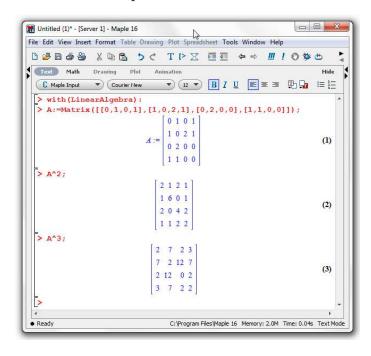
 a_{ij} = number of edges from vertex *i* to vertex *j*.

In a simple graph, where no loops or multiple edges are allowed, we have $a_{ij} = 0$ or 1, and $a_{ii} = 0$; but for our present purposes, such a restriction is not needed. A walk of length n in G from vertex v to vertex w, is a sequence of n edges, starting with an edge from vertex $v_0 = v$ to some vertex v_1 , followed by an edge from v_1 to a vertex v_2 , etc., and ending with

an edge from vertex v_{n-1} to vertex $v_n = w$. In a walk, repeated vertices and repeated edges are permitted (compare with a *trail*, where vertices may be repeated but not edges).

Theorem 1. The number $w_n(i, j)$ of walks of length n from vertex i to vertex j in a graph G, is the (i, j)-entry of A^n where A is the incidence matrix of G.

The following MAPLE code demonstrates using our graph G above, where we first enter the adjacency matrix A and then computes A^2 and A^3 :



Note that the matrix A^2 yields our table of values of $w_2(i, j)$ above; and the number of walks of length 3 from vertex 1 to vertex 4, say, is $w_3(2, 4) = 7$, the (2, 4)-entry of A^3 .

To see why this works, consider first the case n = 2. The number of walks of length 2 from vertex *i* to vertex *j* is

$$w_{2}(i,j) = \sum_{k \in [n]} \left(\begin{array}{c} \text{number of edges} \\ \text{from } i \text{ to } k \end{array} \right) \left(\begin{array}{c} \text{number of edges} \\ \text{from } k \text{ to } j \end{array} \right)$$
$$= \sum_{k \in [n]} a_{ik} a_{kj}$$
$$= \text{the } (i,j)\text{-entry of } A^{2}$$

by the definition of matrix multiplication. Similarly for arbitrary n, the number of walks

of length n from vertex i to vertex j is

$$w_n(i,j) = \sum_{v_1,v_2,\dots,v_{n-1}\in[n]} \left(\begin{array}{c} \text{number of edges} \\ \text{from } i \text{ to } v_1 \end{array} \right) \left(\begin{array}{c} \text{number of edges} \\ \text{from } v_1 \text{ to } v_2 \end{array} \right) \cdots \left(\begin{array}{c} \text{number of edges} \\ \text{from } v_{n-1} \text{ to } j \end{array} \right)$$
$$= \sum_{v_1,v_2,\in[n]} a_{iv_1} a_{v_1v_2} a_{v_2v_3} \cdots a_{v_{n-1}j}$$
$$= \text{the } (i,j)\text{-entry of } A^n$$

which proves Theorem 1.

For each pair of vertices (i, j), we can compute as many terms as desired of the sequence $w_0(i, j)$, $w_1(i, j)$, $w_2(i, j)$, $w_3(i, j)$, ... by 'simply' taking successive powers of the adjacency matrix A, then reading off the (i, j) entry. Better yet, we can explicitly obtain the (ordinary) generating function for this sequence,

$$W(x) = W_{ij}(x) = \sum_{n \ge 0} w_n(i,j)x^n = w_0(i,j) + w_1(i,j)x + w_2(i,j)x^2 + w_3(i,j)x^3 + \cdots,$$

sometimes known as the walk generating function.

Theorem 2. The generating function $W_{ij}(x)$ for $w_n(i, j)$ equals the (i, j)-entry of $(I - xA)^{-1}$.

Proof. By direct expansion we see that

$$(I - xA)(I + xA + x^{2}A^{2} + x^{3}A^{3} + x^{4}A^{4} + \cdots)$$

= $I - xA + xA - x^{2}A^{2} + x^{2}A^{2} - x^{3}A^{3} - x^{4}A^{4} + x^{4}A^{4} - \cdots$
= I ,

so that

$$(I - xA)^{-1} = I + xA + x^2A^2 + x^3A^3 + x^4A^4 + \cdots$$

The (i, j)-entry of this matrix is $\sum_{n\geq 0} x^n w_n(i, j) = W_{ij}(x)$.

In our original example, the generating function for the number of walks of length n from vertex i to vertex j is the (i, j)-entry of

$$(I - xA)^{-1} = \frac{1}{d(x)} \begin{bmatrix} 1 - 5x^2 & x(1+x) & 2x^2(1+x) & x(1+x-4x^2) \\ x(1+x) & 1-x^2 & 2x(1-x^2) & x(1+x) \\ 2x^2(1+x) & 2x(1-x^2) & (1+x^2)(1-2x) & 2x^2(1+x) \\ x(1+x-4x^2) & x(1+x) & 2x^2(1+x) & 1-5x^2 \end{bmatrix}$$

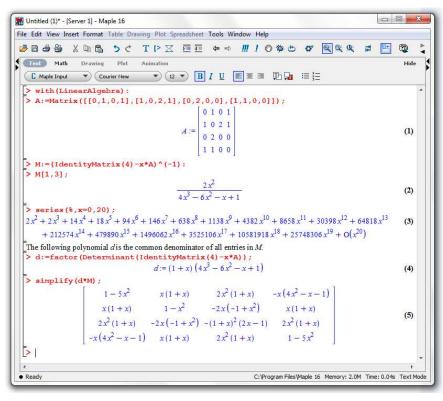
where the common denominator $d(x) = (1+x)(1-x-6x^2+4x^3)$. In particular

$$W_{13}(x) = 2x^2 + 2x^3 + 14x^4 + 18x^5 + 94x^6 + 146x^7 + 638x^8 + 1138x^9 + 4382x^{10} + \cdots,$$

so the number of walks of length n from vertex 1 to vertex 3 is given by

 $0, 0, 2, 2, 14, 18, 94, 146, 638, 1138, 4382, \ldots$

for $n = 0, 1, 2, 3, \ldots$ All these computations are demonstrated in the MAPLE session



This concludes the solution of the 4-part problem Will solved in the 1997 film *Good* Will Hunting.