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Let {Mξ}ξ∈X be an indexed collection of structures over a common language L. The

product Π =
∏

ξ∈X Mξ is also a structure over this same language L.

Example. Suppose each Mξ is a field. We take for L the language of rings (which

serves also as the common language of fields). Thus L has constants 0 and 1, and

two binary operations: + and ×. (Possibly other symbols as well: a unary function

symbol − for additive inverses, and a unary function for multiplicative inverses, per-

haps represented by the superscript symbol −1. Let’s not worry about these for now.)

Then Π is a structure over the same language L: addition and multiplication are de-

fined componentwise. We interpret the symbol 0 in Π as the element having 0 in each

component (or more correctly, in component ξ we take the zero element of Mξ, as the

interpretation of the symbol 0 may vary from component to component. Similarly 1

is interpreted in Π as the element whose ξ-component is interpreted as the identity

element of Mξ. If each Mξ is a field, then it is easily checked that Π =
∏

ξ∈X Mξ is

a ring; but not a field for |X| > 1, since Π has zero divisors. To correct this we need

ultrafilters.

Let U be an ultrafilter on X. Then M = Π/U is also a structure over L; this is known as

an ultraproduct of the Mξ’s. Elements of M = Π/U are equivalence classes of Π where two

elements x = (xξ)ξ∈X and y = (yξ)ξ∈X in Π are equivalent if ‘almost all’ coordinates agree

(relative to U). This means that xξ = yξ for all ξ ∈ U , where U ∈ U. (Check, using the

definition of an ultrafilter, that this is an equivalence relation.) All functions and relations

on Π are defined coordinatewise, and are well-defined (i.e. their value is independent of

the choice of representatives for equivalence classes).

For example if f is a binary function symbol in L and f(xξ , yξ) = zξ in Mξ, then

f(x, y) = z in M where x = (xξ)ξ∈X , y = (yξ)ξ∈X , z = (zξ)ξ∈X . (Although one function

symbol f from L is used here, its interpretation in each Mξ may be different for each ξ.)

Altering the coordinates of x or y on a ‘small’ set of ξ’s (i.e. for ξ in some non-ultrafilter

subset of X) preserves the equivalence class of f(x, y). If R is a unary relation symbol in

L and x = (xξ)ξ∈X ∈ Π, then either R(xξ) holds for almost all x, in which case we say
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that R(x) holds in M ; or R(xξ) fails for almost all ξ, in which case we say that R(x) does

not hold in M . Again, the question is whether or not the subset {ξ ∈ X : R(xξ)} ⊆ X

is an ultrafilter set; and the answer to this question does not change if we alter a small

subset of the coordinates xξ.

If the structure Mξ = M0 is independent of ξ, then Π = MX
0 and the ultraproduct

M = Π/U = MX
0 /U is called simply an ultrapower.

If Σ is a set of first-order statements in the language of L, and Mξ � Σ for each ξ, then

the ultraproduct M � Σ. (However, Π itself does not model Σ in general; the ultrafilter

plays an indispensible role in this construction of new models from old.)

If the ultrafilter U is principal, generated by the singleton {ξ0}, say (i.e. U = {A ⊆ X :

ξ0 ∈ A}), then it is easy to see that the ultraproduct M ∼= Mξ0
so the ultraproduct con-

struction does not give anything new. Our interest is therefore in nonprincipal ultrafilters,

which bear the promise of yielding new and interesting models.

1. Example: Hyperreals

Let X = ω = {0, 1, 2, . . .} and let U be a nonprincipal ultrafilter on ω. Then the ultrapower

R̂ = Rω/U is the field of hyperreal numbers as described in the previous handout. Here L is

the language of rings (and of fields). Each factor Mξ = R � {axioms for fields}. Although

Π = Rω is only a ring (not a field), the ultrapower R̂ = Rω/U is a field.

2. Example: Ultraproducts of Finite Fields

Consider the set of primes X = {2, 3, 5, 7, 11, . . .} and let U be a nonprincipal ultrafilter on

X. For each prime p ∈ X, denote by Fp the field of order p. Then R =
∏

p∈X Fp is a ring,

and the ultraproduct F = R/U is a field. For each positive integer n, the statement n 6= 0

holds in F = R/U (since it fails for only a small set of primes p ∈ X, namely those primes

dividing n). So F has characteristic zero, i.e. F is an extension of Q. We may check that

F is uncountable, so the degree of the extension [F : Q] is also uncountable. However, F

has many of the same algebraic properties as finite fields, as we proceed to describe.

Given a finite field K of order q and a positive integer r, the field K has a unique

extension field of degree r (up to isomorphism), namely the field of order qr. The property

that a field has an extension of degree r which is unique up to isomorphism, is expressible

as a statement θr in the first order theory of fields. Since Fp � θr for every p ∈ X and r > 1,

it follows that F � θr also, where F = R/U as above. It is very difficult to find explicit

examples of fields of characteristic zero with this property! Note that C � θr iff r = 1 (the

field of complex numbers has no nontrivial finite extensions since it is algebraically closed).

Also R � θr iff r ∈ {1, 2} (the only nontrivial finite extension of R is C). Although Q has

finite extensions of every degree r > 2, it has infinitely many such extensions; for example
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the quadratic extensions of Q have the form Q[
√

d ] where d is a squarefree integer; and

for different choices of d, these extensions are nonisomorphic. The same is true of every

algebraic number field, i.e. finite extension field K ⊇ Q : we have K � θr iff r = 1.

3. Ultraproducts of Projective Planes

Consider the language of point-line incidence geometry. Objects are distinguished

(using a unary relation) as either points or lines. There is a single binary relation called

incidence; pairs which satisfy this relation necessarily consist of one point and one line.

Consider a structure P in this language, i.e. P is a system of points and lines, some pairs

of which are incident. We say P is a projective plane if it satisfies three first-order axioms,

which embody the following requirements:

(P1) Any two distinct points are incident with exactly one line.

(P2) Any two distinct lines are incident with exactly one point.

(P3) There exist four points, of which no three are collinear.

Given a family of projective planes Pξ indexed by ξ ∈ X, and an ultrafilter U on X,

the ultraproduct P = (
∏

ξ∈X Pξ)/U is a projective plane.

There are many known examples of projective planes. The best-known examples,

which we define here, are the classical projective planes, constructed as follows. Given a

field F , the structure P 2(F ) has as its points and lines the subspaces of F 3 of dimension

1 and 2 respectively; here F 3 denotes a 3-dimensional vector space over F . If F is finite

of order q, then P 2(F ) has exactly q2 + q + 1 points and the same number of lines; if F is

infinite, then the set of points (or lines) of P 2(F ) is also infinite, of the same cardinality

as F . Since any two distinct 1-spaces of F 3 span a 2-space, P 2(F ) � (P1). Since any two

distinct 2-subspaces of F 3 intersect in a 1-space, P 2(F ) � (P2). It is a routine exercise to

check that P 2(F ) � (P3), so P 2(F ) is a projective plane.

An important theorem in projective plane geometry is that a projective plane P is

classical (i.e. isomorphic to P 2(F ) for some field F ) iff it satisfies a first-order condition

(P4) asserting that for any configuration of points and lines in P as shown, the points R0,

R1 and R2 must be collinear:
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There are many projective planes known which do not satisfy this condition, and so are

nonclassical.

An ultraproduct of classical projective planes P =
(∏

ξ∈X P 2(Fξ)
)
/U, must also be

classical. This is because P 2(Fξ) � (P4) for each ξ, which forces P � (P4). In particular,

an ultraproduct of the finite classical planes P 2(Fp) must be isomorphic to P 2(F ) for

some field F . It should come as no surprise that F is actually the ultraproduct of the

finite fields Fp as described in Section 2 above. The resulting plane, while infinite (indeed,

uncountable) shares many properties with the classical finite planes.

4. Ultraproducts of Graphs

The language of graphs requires a single binary relation symbol for adjacency. The

axioms for graph theory require that this relation be symmetric (at least for ordinary

graphs, where edges are not directed) and irreflexive (if we do not want loops). If {Γξ}ξ∈X

is an indexed family of graphs, and U is an ultrafilter on X, then the ultraproduct Γ =

(
∏

ξ∈X Γξ)/U is also a graph. If Σ is a set of first-order sentences in the language of

graphs, and Γξ � Σ for all ξ ∈ X, then Γ � Σ. For example, if every Γξ is triangle-free

(i.e. having no 3-cycles), then Γ is also triangle-free. It is promising to look for new and

interesting graphs this way, in particular infinite graphs which share many properties of

known families of finite graphs.

An ultraproduct of graphs of degree k has degree k. Here we can replace ‘degree k’ by

‘degree at most k’ or by ‘degree ∈ K for any finite set K of natural numbers. Or we can

replace ‘degree’ by ‘diameter’ or ‘girth’ throughout. In each case the property in question

is expressible in first order logic.

However, connectedness is not preserved by ultraproducts, as this is not a first-order

property. For example, if Γn is a path of length n for each n > 1, then a (nonprincipal)

ultraproduct Γ = (
∏

n>1
Γn)/U has uncountably many infinite paths as its connected

components, each path having 0 or 1 (but never 2) endpoints. Although the property of

having diameter 3 (or diameter k for any other fixed k) is expressible in first order logic;

but we cannot quantify over k, only over vertices.

A (nonprincipal) ultraproduct of bipartite graphs need not be bipartite, as the prop-

erty of being bipartite is not expressible in the first order theory of graphs. (One can of

course use instead the first order theory of bipartite graphs, in which a unary relation is

added to the language in order to distinguish the two parts of the partition.) More gen-

erally, the property of having chromatic number k is not a first-order property of graphs,

and so this property need not be preserved by ultraproducts. (The case of chromatic num-

ber 2 is equivalent to the property of bipartiteness.) For example if K2 is the graph on

two vertices with one edge, then K2 has chromatic number 2 (i.e. is bipartite), whereas
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a nonprincipal ultrapower of K2 is a complete graph on an uncountable vertex set, so its

chromatic number is uncountable.

5. The Compactness Theorem

We obtained the Compactness Theorem for first order logic as an easy consequence of the

Soundness and Completeness Theorem; however, we did not work through the details of

the proof of the Soundness and Completeness Theorem. Here, for the first time in class

this semester, we give a reasonably self-contained proof of the Compactness Theorem for

first order logic.

Let Σ be a set of first order sentences in some language L. Let X be the collection

of all finite subsets of Σ. We suppose that for each A ∈ X, there exists a model MA � A.

We must show that M � Σ for some L-structure M . (Without loss of generality, Σ is

infinite; otherwise the desired conclusion follows immediately.) We will obtain M as an

ultraproduct over X. However, we must be careful in the choice of ultrafilter U on X; it

is not sufficient for U to be nonprincipal. Also note that we require an ultrafilter on X

rather than on Σ itself.

For each A ∈ X, consider the collection of all finite supersets of A:

A+ = {B ∈ X : B ⊇ A} ⊆ X.

Note that for any A1, A2, . . . , An ∈ X, we have A1 ∪A2 ∪ · · · ∪An ∈ X since this is a finite

union of finite subsets of X, so

A+

1 ∩ A+

2 ∩ · · · ∩ A+
n = (A1 ∪ A2 ∪ · · · ∪ An)+ 6= ∅.

Since the collection {A+ : A ∈ X} of subsets of X satisfies the finite intersection property,

it generates a filter F on X. Extend F to an ultrafilter U ⊇ F on X, and consider the

ultraproduct M =
(∏

A∈X MA

)
/U.

We must show that M � Σ. Equivalently, for every finite subset B ⊆ Σ, we show

that M � B. Clearly MA � B for all A ∈ B+, since in this case MA � A ⊇ B. Note

that B+ ∈ U since B+ ∈ F. We have MA � B for almost all A ∈ X (with respect to the

ultrafilter U) so M � B as required.
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