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Tychonoff’s Theorem, often cited as one of the cornerstone results in general topol-

ogy, states that an arbitrary product of compact topological spaces is compact. In the

1930’s, Tychonoff published a proof of this result in the special case of [0, 1]A, also stating

that the general case could be proved by similar methods. The first proof in the gen-

eral case was published by Čech in 1937. All proofs rely on the Axiom of Choice in one

of its equivalent forms (such as Zorn’s Lemma or the Well-Ordering Principle). In fact there

are several proofs available of the equiv-

alence of Tychonoff’s Theorem and the

Axiom of Choice—from either one we can

obtain the other. Here we provide one of

the most popular proofs available for Ty-

chonoff’s Theorem, using ultrafilters. We

see this approach as an opportunity to

learn also about the larger role of ultra-

filters in topology and in the foundations

of mathematics, including non-standard analysis. As an appendix, we also include an

outline of an alternative proof of Tychonoff’s Theorem using a transfinite induction, using

the two-factor case X ×Y (previously done in class) for the inductive step. This approach

is found in the exercises of the Munkres textbook.

The proof of existence of nonprincipal ultrafilters was first published by Tarski in

1930; but the concept of ultrafilters is attributed to H. Cartan.

1. Compactness and the Finite Intersection Property

Before proceeding, let us recall that a collection of sets S has the finite intersection

property if S1 ∩ · · · ∩ Sn 6= ∅ for all S1, . . . , Sn ∈ S, n > 0. We point out the following

characterization of compact sets by the finite intersection property.

1.1 Lemma. Let X be a topological space. The following two conditions are equiv-

alent:

(i) X is compact.

(ii) If S is any collection of closed subsets of X with the finite intersection property,

then
⋂
S 6=∞.
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Proof. Let S be any collection of closed sets in X with
⋂

S = ∅, i.e.
⋃
C∈S(X ................C) =

X ................
⋂
C∈S C = X. If X is compact then there exist C1, . . . , Cn ∈ S such that X =

(X ................C1)∪ · · · ∪ (X ................Cn), i.e. C1 ∩ · · · ∩Cn = ∅ and S does not have the finite intersection

property. This gives (i)⇒(ii); and the converse follows by reversing the steps.

A collection of basic closed sets is a collection C of closed sets such that every closed

subset of X is an intersection of sets in C; that is, {X ................C : C ∈ C} is a collection of basic

open sets. In class we proved (i)⇔(ii) of the following; and the third equivalence follows

by arguments similar to Lemma 1.1.

1.2 Lemma. Let X be a topological space, and let C be a collection of basic closed

sets for X. The following three conditions are equivalent:

(i) X is compact.

(ii) Every basic open cover of X has a finite subcover.

(iii) If S ⊆ C has the finite intersection property, then
⋂

S 6= ∅.

2. Convergence of ultrafilters

Let X be a topological space, and U an ultrafilter on X. We say that U converges to a

point x ∈ X, denoted U ↘ x, if every open neighborhood U of x satisfies U ∈ U. If X

is discrete, then every convergent ultrafilter is principal: if U ↘ x and {x} is open, then

{x} ∈ U so U = F{x} = {U ⊆ X : x ∈ U}. In this case, of course, x is the unique point to

which U convereges.

2.1 Theorem. Let X be a topological space. Then

(a) X is Hausdorff iff every ultrafilter on X converges to at most one point.

(b) X is compact iff every ultrafilter on X converges to at least one point.

Proof. (a) Let X be a Hausdorff space, and suppose U ↘ x and U ↘ y for some points

x 6= y. Let U, V ⊆ X be disjoint open neighborhoods of x and y respectively. Then

U, V ∈ U and so ∅ = U ∩ V ∈ U, a contradiction.

Conversely, suppose every ultrafilter on X converges to at most one point; and let x 6=
y be points in X. Suppose that every open neighborhood of x has nontrivial intersection

with every open neighborhood of y. Then the collection

S =
{

open U ⊆ X : x ∈ U or y ∈ U
}

has the finite intersection property, so S ⊆ U for some ultrafilter U. If U, V ⊆ X are open

neighborhoods of x and y respectively, then U, V ∈ U so U ∩ V 6= ∅.
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(b) Let X be a compact space, and suppose U is an ultrafilter on X which does not

converge to any point of X. Then for every point x ∈ X, we can find an open neighborhood

Ux of x such that Ux /∈ U, i.e. the complement X................Ux ∈ U. We obtain a collection of closed

sets {X ................Ux : x ∈ X} with empty intersection since x /∈ X ................Ux. By Lemma 0.1, there

exist x1, x2, . . . , xn ∈ X such that i.e. (X ................Ux1) ∩ · · · ∩ (X ................Uxn) = ∅. This is impossible

since each X ................Uxi
∈ U.

Conversely, suppose every ultrafilter on X converges; and suppose that X has an open

cover O without any finite subcover. This says that the collection of closed sets

S = {X ................U : U ∈ O}

has the finite intersection property. Extend this to an ultrafilter U ⊇ S. By hypothesis,

there exists a point x ∈ X such that U ↘ x. The point x is covered by some set U ∈ O;

and so U ∈ U. But also X................U ∈ S ⊆ U, so U contains (X................U)∩U = ∅, a contradiction.

We have the following characterization of the topology by ultrafilters:

2.2 Theorem. Let X be a topological space, and let U ⊆ X. Then U is open iff

U ∈ U for every ultrafilter U converging to some point of U .

Proof. If U ⊆ X is open and U is an ultrafilter converging to a point u ∈ U , then we must

have U ∈ U by definition of the convergence U↘ u.

Conversely, let U ⊆ X and suppose U ∈ U for every ultrafilter U converging to

some point of U . If U is not open, then there exists a point u ∈ U such that every open

neighborhood of u contains at least one point of X................U . This would mean that the collection

of sets

S = {X ................U} ∪ {all open neighborhoods of u}

has the finite intersection property. Extend this family of sets to an ultrafilter U ⊇ S.

By construction, U contains every open neighborhood of u and so U↘ u. By hypothesis,

U ∈ U; but then ∅ = (X ................U) ∩ U ∈ U, a contradiction. So U must in fact be open as

claimed.

3. Pushing forward ultrafilters

Let f : X → Y be any map of sets, and suppose U is an ultrafilter on X. Define f∗(U) to

be the collection of all subsets V ⊆ Y such that f−1(V ) ∈ U.

3.1 Proposition. f∗(U) is an ultrafilter on Y .
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Proof. Since f−1(∅) = ∅ /∈ U and f−1(Y ) = X ∈ U, we have ∅ /∈ f∗(U) and Y ∈ f∗(U).

If V1, V2 ∈ f∗(U) then f−1(V1 ∩ V2) = f−1(V1) ∩ f−1(V2) ∈ U so V1 ∩ V2 ∈ f∗(U). Also if

V1 ∈ f∗(U) and V1 ⊆ V ⊆ Y , then f−1(V ) ⊇ f−1(V1) ∈ U so f−1(V ) ∈ U and V ∈ f∗(U).

So f∗(U) is a filter on Y .

Finally, if Y = Y1tY2 (our notation for a disjoint union: Y = Y1∪Y2 with Y1∩Y2 = ∅)

then X = f−1(Y1) t f−1(Y2) so f−1(Yi) ∈ U for exactly one choice of i ∈ {1, 2}, giving

Yi ∈ f∗(U). Thus f∗(U) is in fact an ultrafilter on Y .

The ultrafilter f∗(U) is called the push-forward of the ultrafilter U. Note that if

f : X → Y and g : Y → Z then (g ◦ f)∗(U) = g∗(f∗(U)) is an ultrafilter on Z. The

rule (g ◦ f)∗ = g∗ ◦ f∗ is indicative of ‘push-forward’ maps; in the case of pull-backs,

where superscript ∗’s are used, the rule is instead (g ◦ f)∗ = f∗ ◦ g∗. [Remark: Denote

by Set the category of sets, where morphisms are maps between sets. The map X 7→
{ultrafilters on X}, f 7→ f∗ is a covariant functor Set→ Set.]

3.2 Theorem. Let X and Y be topological spaces, and consider an arbitrary map

f : X → Y . Then f is continuous iff f∗(U) ↘ f(x) in Y for every ultrafilter U ↘ x

in X.

Proof. First suppose f is continuous, and let U be an ultrafilter on X with U ↘ x. For

every open neighborhood V ⊆ Y of f(x), the set f−1(V ) ⊆ X is an open neighborhood

of x. We have f−1(V ) ∈ U and therefore V ∈ f∗(U). By definition, f∗(U)↘ f(x).

Conversely, suppose f∗(U) ↘ f(x) in Y whenever U is an ultrafilter converging to a

point x in X; and let V ⊆ Y be open. To show that the preimage f−1(V ) ⊆ X is open, we

will use Theorem 2.2. Accordingly, let U be any ultrafilter in X converging to some point

x ∈ f−1(V ). By hypothesis, f∗(U)↘ f(x) in Y ; and since V ⊆ Y is an open neighborhood

of f(x), we have V ∈ f∗(U), i.e. f−1(V ) ∈ U. By Theorem 2.2, f−1(V ) is open. Thus f is

continuous.

The latter result begs for a comparison between ultrafilters and sequences. Recall that

for a continuous function f : X → Y , we have f(xn)→ f(x) in Y whenever xn → x in X.

The converse does not hold without some additional hypotheses (e.g. X is a metric space).

Sequences of the form x1, x2, x3, . . . are limited in that they are countable by defintion.

Ultrafilters, which do not suffer from this constraint, suffice to characterize topologies and

continuity in general.

4. Product spaces

Let Xα be a family of topological spacesindexed by α ∈ A. The product space X =∏
α∈AXα has points of the form x = (xα)α∈A where xα ∈ Xα for all α ∈ A. We describe
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below the natural topology on this set, imposed by the individual topologies on the spaces

Xα. But first, let us be clear what is meant by a point (xα)α.

In the case |A| = n < ∞, we might as well take A = {0, 1, 2, . . . , n−1}. To simplify

notation, we use ordinal notation where the finite ordinals are defined recursively by n =

{0, 1, 2, . . . , n−1}, and then

X = X0 ×X1 × · · · ×Xn−1 =
{

(x0, x1, . . . , xn−1) : xi ∈ Xi for all i ∈ n
}
.

In the special case where X0 = X1 = · · · = Xn−1, we obtain

X = X0 ×X0 × · · · ×X0︸ ︷︷ ︸
n times

= Xn
0 .

Every point x = (x0, x1, . . . , xn−1) ∈ X can be viewed as a function f : n → X0; simply

identify each function f : n→ X0 with its sequence of values (f(0), f(1), . . . , f(n−1)). To

accommodate arbitrary finite products
∏
i∈nXi, we again view every point as a function

f : n →
⋃
iXi, but with the restriction that f(i) ∈ Xi for each i. If we omit the ‘f ’, the

function mapping i 7→ xi is identified simply by its list of values (x0, x1, x2, . . . , xn−1).

Next we proceed to countable products, using ω = {0, 1, 2, . . .} as index set. Here the

Greek letter ω is the smallest infinite ordinal: it is the set of all finite ordinals, i.e. the

set of all non-negative integers. (One could use positive integers instead.) Now we have a

countable product of sets given by

X =
∏
i∈ω

Xi = X0 ×X1 ×X2 × · · · =
{

(x0, x1, x2, . . .) : xi ∈ Xi for all i ∈ ω
}
.

Here every point x ∈ X is an infinite sequence, which we identify with the map i 7→ xi.

As special cases (where all component spaces Xi are equal), we have

Rω = R× R× R× · · · ,

the set of all (countably) infinite sequences of real numbers, and

2ω = {0, 1}ω = {0, 1} × {0, 1} × {0, 1} × · · · ,

the set of all (countably) infinite binary sequences. (As a set, this last example is the

Cantor set.)

Now for an index set A of arbitrary cardinality, the general product X =
∏
α∈AXα

may be regarded as the set of all functions defined on A, which map α 7→ xα ∈ Xα for

each α ∈ A. Points may be denoted x = (xα)α∈A. In the special case where all Xα’s are

equal to some fixed space X0, we have

X = XA
0 = {functions A→ X0}.
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For example, the set RR is simply the set of all functions R→ R.

Every product space X =
∏
α∈AXα comes naturally equipped with projections onto

the various factors; these are the surjections given by

π : X → Xα, x 7→ xα.

Thinking of a point x ∈ X as a function, the αth coordinate πα(x) = xα is just the value

of that function at the input value α ∈ A.

Now the product topology on X is the coarsest topology for which each of the

projections πα : X → Xα is continuous. Equivalently, a basis for the topology on X is the

collection of all basic open sets of the form∏
α∈A

Uα

where each Uα ⊆ Xα is open, and Uα = Xα for all but finitely many α.

By contrast, the box topology on X is the topology having as basis all sets of the

form
∏
α∈A Uα where Uα ⊆ Xα for all α ∈ A, and no additional restriction. Of course if

|A| <∞, then this coincides with the product topology; but in general, the box topology is

a refinement of the product topology—much too fine to be useful for most purposes. Unless

otherwise specified, it is the product topology that we will take for a general product of

topological spaces X =
∏
αXα.

For example, consider the sequence of points v1, v2, v3, . . . ∈ [0, 1]ω given by

v1 = (0, 1, 1, 1, 1, 1, . . .),

v2 = (0, 0, 1, 1, 1, 1, . . .),

v3 = (0, 0, 0, 1, 1, 1, . . .),

v4 = (0, 0, 0, 0, 1, 1, . . .),

etc. You might hope that vn converges to the point (0, 0, 0, 0, 0, 0, . . .) in [0, 1]ω, and this

is certainly true—if we denote 0 = (0, 0, 0, . . .) then a basic open neighborhood of 0 in the

product topology has the form

U = U0 × U1 × U2 × · · · × Um−1 × [0, 1]× [0, 1]× [0, 1]× · · ·

where each Ui is an open neighborhood of 0. Since vn ∈ U whenever n > m, we have

vn → 0. In the box topology, the sequence vn does not converge at all; for example

consider the neighborhood

U ′ =
[
0, 12
]
×
[
0, 12
]
×
[
0, 12
]
×
[
0, 12
]
× · · · ,

a basic open neighborhood of 0 in the box topology. The sequence vn never gets inside U ′,

no matter how large n is; so vn fails to converge to 0 in the box topology. You might think
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this has to do with the coordinates of vn converging ‘pointwise’ (and not ‘uniformly’) to

0; but actually the problem is much worse than that. Consider the sequence

w1 =
(
0, 1, 1, 1, 1, 1, . . .

)
,

w2 =
(
0, 0, 12 ,

1
2 ,

1
2 ,

1
2 , . . .

)
,

w3 =
(
0, 0, 0, 14 ,

1
4 ,

1
4 , . . .

)
,

w4 =
(
0, 0, 0, 0, 18 ,

1
8 , . . .

)
,

etc. which converges to 0 (in the product topology). The coordinates do converge ‘uni-

formly’ to 0, and reasonably fast, yet the sequence wn never gets inside[
0, 1
]
×
[
0, 12
]
×
[
0, 13
]
×
[
0, 15
]
×
[
0, 19
]
× · · · ,

so wn 6→ 0 in the product topology. The box topology contains far too many open sets—it

is too close to the discrete topology to be very useful for us.

Generalizing the examples above, we see that a sequence of points in X =
∏
αXα

converges, iff it converges ‘coordinatewise’:

4.1 Theorem. Let xn = (xn,α)α be a sequence of points in X =
∏
αXα. (Note that

two subscripts are used: n = 1, 2, 3, . . . indexes the points of the sequence, and α ∈ A
indexes the coordinates of each point.) Also let a = (aα)α ∈ X. Then xn → a in X,

iff xn,α → aα for each α, as n→∞.

Proof. Suppose first that xn → a. Since πα : X → Xα is continuous, this implies that

xn,α = π(xn)→ πα(a) = aα for all α.

To prove the converse, it suffices to consider a basic open neighborhood U of a ∈ X.

This is a set of the form U =
∏
α Uα where each Uα ⊆ Xα is an open neighborhood

of aα; and Uα = Xα for all α 6= α1, α2, . . . , αm. Under the hypothesis that xn,α → aα
for all α ∈ A, there exist constants N1, . . . , Nm such that for all i ∈ {1, 2, . . . ,m}, we

have xn,αi ∈ Uαi whenever n > Ni. Let N = max{N1, . . . , Nm}; then for all n > N

and all α ∈ A, we have xn,α ∈ Uα whenever n > N . For α ∈ {α1, . . . , αm}, this fol-

lows by the choice of n > N > Ni; and for α /∈ {α1, . . . , αm}, it follows simply because

xα ∈ Xα = Uα.

Analogously, the product topology can be characterized using ultrafilters:

4.2 Theorem. Let U be an ultrafilter on X =
∏
α∈AXα, and let x = (xα)α ∈ X.

Then U↘ x iff (πα)∗(U)↘ xα in each Xα.

Proof. If U↘ x then by Theorem 3.2, for each α ∈ A we have (πα)∗(U)↘ xα.
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Conversely, suppose that for each α ∈ A, we have (πα)∗(U) ↘ xα. Let U ⊆ X be

an open neighborhood of x; we must show that U ∈ U. As usual, it suffices to consider

subbasic open sets of the form U = π−1α (Uα) where Uα ⊆ Xα is an open neighborhood of

xα . In this case Uα ∈ (πα)∗(U) and so U = π−1α (Uα) ∈ U as required. Since U is closed

under finite intersections and taking supersets, the result carries over for a general open

neighborhood U of x, giving U↘ x.

5. Tychonoff’s Theorem

5.1 Theorem (Tychonoff). If each of the topological spaces Xα is compact, then

so is the product space X =
∏
αXα.

For example, [0, 1]n is compact. Also since closed subsets of a compact space are compact,

we see that a subset K ⊆ Rn is compact iff it is closed and bounded (with respect to the

usual metric). . . the details of this argument were given in class. Note that the product

topology is assumed here—if we substitute the box topology, the result fails, yet another

example that the box topology is usually not a good choice. For example, consider the

subsets of [0, 1]ω of the form

U0 × U1 × U2 × · · ·

where each Ui is either
[
0, 23
)

or
(
1
3 , 1
]
. There are 2ℵ0 such sets, and they cover [0, 1]ω.

They are all open in the box topology; but no finite subcollection of these sets suffice to

cover [0, 1]ω.

Proof of Theorem 5.1. We use Theorem 2.1(b). Let U be an ultrafilter on X. For each α,

the push-forward (πα)∗(U) is an ultrafilter on Xα. By Theorem 2.1, (πα)∗(U) ↘ xα for

some point xα ∈ Xα. By Theorem 4.2, U↘ x where x = (xα)α ∈ X. Since every ultrafil-

ter on X converges, Theorem 2.1 shows that X is compact.

6. Application: Weak-* Topology

Let V be a real vector space with a norm || · || : V → R satisfying

• ||v|| > 0, and equality holds iff v = 0;

• ||v + w|| 6 ||v||+ ||w|| for all v, w ∈ V ; and

• ||cv|| = |c|||v|| for all c ∈ R, v ∈ V .

We call V a normed vector space. A bounded linear functional on V is a map

f : V → R such that

• f is linear: f(av + bw) = af(v) + bf(w) for all a, b ∈ R, v, w ∈ V ;

• there exists a real constant C > 0 such that |f(v)| 6 C||v|| for all v ∈ V .
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The set of all bounded linear functionals on V is a vector space, denoted V ∗. Consider the

closed unit ball in V defined by

B = {v ∈ V : ||v|| 6 1}.

Let f ∈ V ∗. Since the values of f on B are bounded, we may define

||f || = sup{|f(v)| : v ∈ B}.

This makes V ∗ also a normed vector space, hence a metric space with distance function

d(f, g) = ||f − g||. The unit ball in V ∗ is

B∗ = {f ∈ V ∗ : ||f || 6 1} = {f ∈ V ∗ : |f(v)| 6 ||v|| for all v ∈ V }.

Note that |f(v)| 6 1 for all f ∈ B∗ and v ∈ B. Using linearity, every f ∈ B∗ is uniquely

determined by its restriction to B; so after identifying f with this restriction, B∗ is the

set of all functions B → [−1, 1] such that f is the restriction of a linear functional V → R.

There are two reasonable topologies to take on V ∗. One is the metric topology given

by its norm. This topology is often too strong to be useful; for example the unit ball B∗

is not compact in this topology, except in the finite-dimensional case. To see this, observe

that B∗ is covered by open balls of radius 1
2 and no finite number of these balls suffice to

cover B∗ (except in the finite-dimensional case).

To rectify this problem, consider V ∗ as a subset of the product space RV . Suppose

f, f1, f2, f3, . . . ∈ V ∗. By Theorem 4.1, fn → f in this topology iff we have pointwise

convergence fn(v)→ f(v) for every v ∈ V . This topology is called the weak-* topology

on V ∗. It is coarser (weaker) than the norm topology (strong topology) defined above.

Note that pointwise convergence does not imply ||fn− f || → 0, so the convergence fn → f

does not hold in the norm topology.

6.1 Theorem. The subset B∗ ⊆ V ∗ is closed and compact in the weak-* topology.

To prove this, recall (as above, identifying each f ∈ B∗ with its restriction to B) that B∗

is a closed subset of [−1, 1]B which itself is compact, by Tychonoff’s Theorem.

7. Completions and Compactifications

Recall that every metric space X has a natural completion X̂. By definition, X̂ is a

complete metric space in which X embeds as a dense subspace, i.e. we have an isometric

embedding ι : X → X̂. Here, ‘embedding’ means that ι gives a homeomorphism between

X and its image ι(X) ⊆ X̂. ‘Isometric embedding’ is the stronger condition that ι pre-

serves distance. The pair (X̂, ι) enjoys the following universal property: If f : X → Y
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is an isometric embedding of X in a complete metric space Y , then there is an isometric

embedding f̂ : X̂ → Y such that the following diagram commutes:

X

Y

X̂

f

ι

f̂

............................................................................................................. .................

..........................................................................................................................................................
..

........
.......
.. ....................

........
..
.......
........
..

........

........

........

........

........

........

........

and this universal property suffices to define the completion. The uniqueness of the comple-

tion follows from this universal property, while its existence is supplied by our construction

X̂ = Cauchy(X)/∼ , ι(x) = (x, x, x, . . .)

where Cauchy(X) ⊆ Xω is the space of all Cauchy sequences in X.

In a similar way, given any topological space X, we would like to define the compacti-

fication of X by the appropriate universal property. But what is the ‘right’ property? For

example there are two obvious ways to compactify R ' (0, 1): by adding one endpoint or

two. The first approach gives the embedding

(0, 1)→ S1, t 7→ e2πti

while the second approach gives the embedding

(0, 1)→ [0, 1], t 7→ t.

In general a compactification of X is understood to mean a compact space in which X

embeds as a dense subspace. (‘Dense’ is required in order to achieve minimality of the

compactification. For example, the map (0, 1) → [0, 1]2, t 7→ (0, t) embeds the interval

(0, 1) in a compact space [0, 1]2; but we can discard the points (x, y) with y > 0 to obtain

[0, 1] as a compactification of (0, 1).) Not every space has a compactification in this sense;

and when it exists, it is not necessarily unique, as our examples show.

Given a topological space X, the easiest compactification is the one-point compact-

ification X ∪ {∞} where we have added just one new point, denoted ‘∞’. Open sets in

X ∪ {∞} are of two types:

• open subsets of X remain open in X ∪ {∞}; and

• subsets of the form (X ................K) ∪ {∞} where K ⊆ X is closed and compact.

The resulting topological space X ∪ {∞} is compact whenever X itself is Hausdorff and

locally compact but not compact. (We say that X is locally compact if every point has

an open neighborhood which is contained in some compact subset.) For example, the one-

point compactification of R is homeomorphic to S1 (the first example listed above). The

second compactification shown above: (0, 1) → [0, 1], t 7→ t, is an example of Stone-Čech

compactification. This approach takes a little more work to explain in general; but it exists
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under much more general conditions on the original space X. We will assume only that X

is Hausdorff and completely regular.

8. The Stone-Čech Compactification

Let X be a completely regular Hausdorff space (see Appendix A). A Stone-Čech com-

pactifation of X is an embedding ι : X → βX such that for every continuous map from

X to a compact Hausdorff space Y , say f : X → Y , there is a unique continuous map

f̂ : βX → Y such that the following diagram commutes:

X

Y

βX

f

ι

f̂

...................................................................................................... .................

..........................................................................................................................................................
..

........
.......
.. ....................

........
..
.......
........
..

........

........

........

........

........

........

........

Here ‘embedding’ means that ι is a homeomorphism between X and its image ι(X) ⊆ βX.

We identify X with its image under this embedding, namely ι(X) ⊆ βX; and this is

necessarily a dense subspace. The uniqueness of the Stone-Čech compactification follows

directly from this universal property; it remains for us to prove its existence. We give this

proof first in the case that X is discrete. Remarkably, the general proof follows from this

special case by taking the appropriate quotient.

Construction of βX when X is discrete

We begin with the case X is a discrete topological space. This special case is in fact

the hardest case; using this we will later complete the general case. In the discrete case,

we simply define

βX = {U : U is an ultrafilter on X}.

Thus points of βX are just ultrafilters on X. We must specify the topology of βX and

show that it is compact Hausdorff. A basis for this topology is obtained as follows: for

every subset A ⊆ X, define

[A] = {U ∈ βX : A ∈ U}.

Before proceeding further, recall that in the case of a singleton set A = {x}, there is a

unique filter containing {x}, namely the principal ultrafilter which we have denoted

Fx = {B ⊆ X : x ∈ B}

and so in this case, [{x}] = {Fx} is a singleton point in βX.
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8.1 Lemma. The map A 7→ [A], P(X) → P(βX) gives an embedding of partially

ordered sets under ‘⊆’. In particular,

(a) [∅] = ∅ and [X] = βX.

(b) If A ⊆ B ⊆ X then [A] ⊆ [B].

(c) [A ∪B] = [A] ∪ [B] and [A ∩B] = [A] ∩ [B].

(d) [X ................A] = βX ................[A].

(e) The map P(X)→ P(βX), A 7→ [A] is one-to-one.

Proof. I will just prove (e), and leave the remaining parts as an exercise. Suppose A 6= B

are distinct subsets of X. If there exists a ∈ A with a /∈ B, then B ⊆ X ................{a} so

[B] ⊆ [X................{a}]. However [A] ⊇ [{a}] 6= ∅ is disjoint from [X................{a}] by (d). Thus [A] 6= [B].

If there exists b ∈ B with b /∈ A, the argument is similar.

8.2 Corollary. The subsets [A] ⊆ βX form a basis for a topology on βX. The

map ι : X → βX, x 7→ Fx embeds X as a discrete dense subspace of βX. Thus the

restriction of ι to X → ι(X) is a homeomorphism.

Proof. The fact that the subsets [A] ⊆ βX form a basis for a topology on βX follows

directly from Lemma 8.1. The map ι : X → βX, x 7→ Fx is clearly one-to-one; and since

the singletons [{x}] = {Fx} are open, the image of X under this embedding is discrete.

For every nonempty subset A ⊆ X, the basic open set [A] ⊆ βX satisfies ι(x) = Fx ∈ [A]

whenever x ∈ A; thus the image ι(A) ⊆ βX is dense. The result follows.

Since [X ................A] = βX ................[A], the sets [A] are clopen; they constitute a family of basic

closed sets, as well as a set of basic open sets, in the terminology of Section 1.

8.3 Theorem. For a discrete space X, the space βX as defined above is compact

and Hausdorff; moreover it is the Stone-Čech compactification of X.

Proof. Let U,U′ ∈ βX be disticnt points, i.e. distinct ultrafilters on X. For some subset

A ⊆ X, we have A ∈ U but A /∈ U′, so that A′ ∈ U′ where A′ = X ................A; then [A] and [A′]

are disjoint open neighborhoods of the points U,U′ respectively. Thus βX is Hausdorff.

We prove compactness using Lemma 1.2 using the fact that {[A] : A ⊆ X} is a family

of basic closed sets for βX. Consider an indexed family {[Aα]}α of basic closed sets with

the finite intersection property; we must show that
⋂
α[Aα] 6= ∅. Since [Aα1

∩· · ·∩Aαn
] =

[Aα1
] ∩ · · · ∩ [Aαn

] 6= ∅ = [∅], by Lemma 8.1(e) we have Aα1
∩ · · · ∩ Aαn

6= ∅. Thus the

sets Aα themselves satisfy the finite intersection property; and so they generate a filter
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on X. Extending this filter to an ultrafilter, we obtain U ∈ βX such that Aα ∈ U for all

α, i.e. U ∈
⋂
α[Aα]. This shows that βX is compact.

It remains to be checked that ι satisfies the required universal property. Let f : X → Y

be any map, where Y is an arbitrary compact Hausdorff space. (Since X is discrete, every

map defined on X is continuous.) Given U ∈ βX, the push-forward ultrafilter f∗(U) on

Y must converge to a unique point by Theorem 2.1, and we denote this point f̂(U) ∈ Y .

This gives a well-defined function f̂ : βX → Y . For all x ∈ X, f̂(ι(x)) = f̂(Fx) = f(x) by

definition of f̂ , since Fx ↘ x; thus f̂ ◦ ι = f .

Since ι(X) ⊆ βX is dense and Y is Hausdorff, it is easy to see that f̂ is the unique map

making the defining diagram commute. To see this, let g : βX → Y such that g ◦ ι = f ,

and let x ∈ X.
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