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Begin with an ordinal
v ={x:xis an ordinal and = < 7}.

Every ordinal is a canonical representative of the order type of some well-ordered set; and
what is important here is that v is a well-ordered set with least element 0. Since each
ordinal is the set of all smaller ordinals, we have

v=100,7) and y+1=7U{y}=10,9].
We use the standard interval notation for subsets of ~:
(a,b) ={z ey :a<z<bl [ab={zey:a<z<b}

etc. The order topology on v has as basis the intervals of the form (a, b), [0, b) contained
in 7. (I haven’t bothered to write (a, b] since this is the same as (a,b+1). Also note that
(a,b) = [a+1,b).) For example

w={0,1,2,...} = {non-negative integers}

and
w+1l=[0,w] =wU{w}

which is the one-point compactification of w. The proof of the following is very similar to
our proof that X = {x € R : 0 < x < 1} is compact (even though X is not well-ordered).

Theorem 1. For every ordinal -, the space [0,7] is compact.

Proof. Let O be an open cover of [0,~], and set
S ={a€l0,7] : [a,7] is covered by finitely many sets in O}.

Since the point [y,7] = {7} is covered by some member of O, we have v € S and in
particular S # @. Since [0, 7] is well-ordered, S has a least element which we denote by m.
If m = 0 then we are done, so assume otherwise. Since m € S, we have
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for some Uy,Us, ..., U, € O. If m is a successor ordinal, say m = a+1 where a € [0,7],
then a € U for some U € O, and then

la,v] ={a}U[m,v| CUUU, UUU---UU,

so a € S, contradicting the minimality of m € S. On the other hand if m is a limit ordinal,
then m € U for some U € O and U contains a basic open neighbourhood of m of the form
(a,b) with a < m < b. In this case we may choose r € (a,m) (since m is a limit ordinal,
there are infinitely many such r’s to choose from) and

[r4+1,v] = (r,m)U[m,y] CUUU; UU U---UU,.

Once again, r+1 € S contradicts the minimality of m. The result follows. ]

The smallest uncountable ordinal is denoted w;. The Tychonoff Plank is the topolog-
ical space
X =[0,w1] x [0,w].

Note that X has the product topology. In particular, recall that each of the ‘horizontal
lines’ [0,wq] x {B} is homeomorphic to [0,ws]; and each of the ‘vertical lines’ {a} x [0, w]
is homeomorphic to [0,w].
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Since both [0,w] and [0, w] are compact Hausdorff, so is X. It follows that X is normal,
and hence completely regular by Urysohn’s Lemma.

Not every subspace of a normal space is normal. The standard counterexample for
demonstrating this is the Punctured Tychonoff Plank

Y = X\{(wl,w)}.
To show that Y is not normal, consider the subsets

K =[0,w)x{w}, L={w}x|[0,w).



These sets are closed in Y since they are obtained by intersecting Y with the closed sets

[0,w1] x{w}, {1} x[0,w] C X

respectively.
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Suppose that K C U and L C V for some disjoint open sets U,V C Y. For each n € w

there exists «,, < w; such that
[an, w1] x {n} C V.

Now let
B = sup{ay, : nEw}:U{an :nEwl.

Since the ordinals are totally ordered by inclusion, 3 is an ordinal; and since 3 is a countable
union of countable sets (recall that each «,, < wp), B is countable, whence 5 < w;. By
definition of 3, we have (8,n) € V for every n € w. But the sequence of points ((ﬁ, n))ne(u
converges to (8,w) € K, so there exists n € w such that (5,n) € U. Now U NV contains
a point (3,n), a contradiction.
Since Y C X is not normal we see that
e subspaces of normal spaces are not necessarily normal; and
e completely regular spaces are not necessarily normal.



