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Abstract

Let X ⊂ R3 be the complement of a single point. We prove, by

transfinite induction, that X can be partitioned into lines. This result

is intended as an introduction to transfinite induction.

1 Cardinality

Let A and B be sets. We write

|A| = |B| (in words, A and B have the same cardinality) if there exists

a bijection A → B;

|A| à |B| if there exists an injection (a one-to-one map) A → B;

|A| < |B| if |A| à |B| but there is no bijection from A to B.

The Cantor-Bernstein-Schroeder Theorem asserts that if |A| à |B| and |B| à

|A|, then |A| = |B|. (The proof is elementary but requires some thought.) So

we may reasonably speak of the cardinality of a set, as a measure of its size,

and compare any two sets according to their cardinalities. The cardinality

of Z is denoted ℵ0. Every set A having |A| à ℵ0 is called countable; in this

case either A is finite, or |A| = ℵ0 (countably infinite). Examples of countably

infinite sets include {positive integers}, 2Z = {even integers}, andQ. Cantor

showed that R is uncountable; we denote |R| = 2ℵ0. This cardinality, which

we call the cardinality of the continuum, strictly exceeds ℵ0; it is also the

cardinality of Rn for every positive integer n.

In this context it is almost obligatory to mention the Continuum Hypothe-

sis (CH), which is the assertion that there is no set A satisfying ℵ0 < |A| < 2ℵ0.
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The validity of this statement is independent of ZFC1, but not to worry! since

we have no immediate use for CH.

2 Well-Ordering

Let S be a set with binary relation ‘à’. We say that S is well-ordered by the

relation ‘à’ if

(WO1) For all x,y ∈ S, we have x à y or y à x.

(WO2) We have x à y and y à x, iff x = y .

(WO3) For all x,y, z ∈ S such that x à y and y à z, we must have x à z.

(WO4) Every nonempty subset of S has a least element. That is, if ∅ ≠ A ⊆

S, then there exists m ∈ A such that m à x for all x ∈ A.

The set R is not well-ordered, with the usual ‘à’ relation; nor are either of the

subsets Z or (0,∞), as none of these has a least element. However, several

subsets of R are well-ordered, most notably the set of non-negative integers2

ω = {0,1,2, . . .}.

It is the well-ordering of ω that allows us to prove statements over the non-

negative integers by induction. More examples of well-ordered sets arise as

subsets of ω. (More generally, every subset of a well-ordered set is well-

ordered.)

We have used the non-strict order relation ‘à’ in our definition. Some-

times it is more convenient to define a well-ordering in terms of the strict

order relation ‘<’. Note that x à y is equivalent to ‘x < y or x = y ’.

Another subset of R, well-ordered by the natural relation ‘à’, is
{

0, 1

2
, 2

3
, 3

4
,

4

5
, . . .

}

, pictured here (not quite to scale):

· · · · · ··········◦

1ZF is the common axiomatic foundation for everyday mathematics. Adding to this the

Axiom of Choice (see Section 3) gives ZFC. The work of Kurt Gödel (1940) and Paul Cohen

(1963) shows that CH cannot be either proved or disproved within ZFC (unless, of course,

ZFC is inconsistent, which seems unlikely).
2The name ‘ω’ for this familiar set, comes from the theory of ordinals; see Sec-

tion 4.
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The hollow dot indicates the omission of the limit point 1 from this set.

But if we include 1, we obtain the set
{

0, 1

2
, 2

3
, 3

4
, 4

5
, . . .

}

∪ {1}, which is also

well-ordered:

· · · · · ··········•

Extending further, we obtain the example
{

0, 1

2
, 2

3
, 3

4
, 4

5
, . . .

}

∪
{

1, 1
1

2
, 1

2

3
, 1

3

4
,

14

5
, . . .

}

which is also well-ordered:

· · · · · ··········• · · · · ··········◦

Our example
{

0, 1

2
, 2

3
, 3

4
, 4

5
, . . .

}

above, has the same order type as ω,

meaning that there is an order-preserving bijection
{

0, 1

2
, 2

3
, 3

4
, 4

5
, . . .

}

→ ω

(an order isomorphism). The next two examples are order-isomorphic to the

ordinals ω + 1 and ω2, respectively (Section 4). In fact, every well-ordered

set is canonically represented by a unique ordinal.

3 Transfinite Induction

The Well-Ordering Principle asserts that every set S can be well-ordered; that

is, if S is any set, then there exists a well-ordered set A which serves as an

index set for the elements of S, so we may write

S = {sα : α ∈ A}.

This principle is logically equivalent to the Axiom of Choice (C), or Zorn’s

Lemma. Briefly, C is the assertion that for any collection S of sets, we may

construct a new set S whose elements are representatives of the sets S ∈ S.

If this sounds reasonable, then you probably won’t need to worry any more

about C for our discussion. We won’t describe Zorn’s Lemma here.

Our immediate interest is in the Principle of Transfinite Induction, and

how it is made possible by well-ordering. Let {Pα : α ∈ A} be a well-ordered

collection of statements (so A is a well-ordered set indexing the family of

statements Pα). The Principle of Transfinite Induction asserts that if
∧

α<β Pβ
implies Pβ, for all β ∈ A, then in fact Pα holds for all α ∈ A. Here

∧

α<β Pβ is

the conjunction of the statements Pα for all α < β, α ∈ A (i.e. the assertion

that Pα holds for all α < β). This Principle probably seems quite reasonable.

To justify it using well-ordering, suppose that on the contrary, Pα fails for

some α ∈ A. Then the set S consisting of all α ∈ A for which Pα is false,
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satisfies S ≠ ∅ by assumption. Then S has a least element m ∈ S. Now Pβ
holds for all β < m, whereas Pm fails, a contradiction.

Take a moment to convince yourself that the usual induction over the

non-negative integers arises a special case of this Principle, in the case A =

ω. In this case our hypothesis is that

P0 holds;

P0 implies P1;

P0 ∧ P1 implies P2;

P0 ∧ P1 ∧ P2 implies P3;

etc. From this we are to conclude that Pα holds for every α ∈ ω; and this

should be recognized as the usual principle of induction (or what is some-

times called ‘complete induction’).

4 Ordinals

An ordinal may be defined as a set S such that x ⊆ S whenever x ∈ S, and

the elements of S are well-ordered by the relation ‘∈’. This is one of many

equivalent definitions. It is probably easier to define ordinals recursively

(following von Neumann) by saying that each ordinal is the well-ordered set

of all smaller ordinals. The smallest ordinal is

0 = ∅.

The next-smallest ordinal is

1 = {0} = {∅},

followed by

2 = {0,1} = {∅,{∅}},

3 = {0,1,2} = {∅, {∅},{∅,{∅}}},

4 = {0,1,2,3} = {∅,{∅},{∅, {∅}},{∅,{∅},{∅, {∅}}}},

etc. After all finite ordinals have been constructed, we continue with

ω = {0,1,2,3, . . .},

ω+1 = {0,1,2,3, . . .} ∪ {ω},

ω+2 = {0,1,2,3, . . .} ∪ {ω,ω+1},
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and eventually

ω2 = {0,1,2,3, . . .} ∪ {ω, ω+1, ω+2, ω+3, . . .}.

This is followed by ω2+1, ω2+2, . . . ; ω3, . . . ; ω4, . . .; and eventually ω2.

Much later we come to ω3, . . . , ω4, . . . , and eventually ωω. Much later, we

reach ωωω

. And so on. All the ordinals we have mentioned so far are, how-

ever, still only countably infinite; so we have still only scratched the surface

of the list of ordinals. After all countable ordinals have been defined, we

meet the first uncountable ordinal, denoted ω1. (Actually ω is an abbrevi-

ation for ω0 .) Much later we reach ω2 , the first ordinal whose cardinality

exceeds that of ω1; and so on. After ω0,ω1,ω2, . . . we find ωω . And so

on. . .

Let β be an ordinal. Then the successor of β is β+ 1 = β∪{β}, this being

the smallest ordinal exceeding β. Every ordinal is either a successor ordinal

or a limit ordinal, but never both. A limit ordinal is an ordinal α such that

α =
⋃

β<αβ. Note that 0 and ω are limit ordinals. Examples of successor

ordinals are 1, 2, 3, etc; also ω+1, ω+2, etc.

Now an arbitrary set S may be indexed as

S = {sα : α ∈ A}

where A is an ordinal. Moreover we may assume A is minimal among all

ordinals of cardinality |A|; otherwise we may simply re-index suitably. (Note

that the ordinals α ∈ A such that |α| à A+ 1, gives a non-empty subset of

A; so by well-ordering, it has a least element. This least element can replace

A as an index set for S.)

5 Example

Theorem 5.1 Let X = R3 Ø {O}, the complement of a point O ∈ R3. Then X

can be partitioned into Euclidean lines.

We will prove Theorem 5.1 by transfinite induction. (If you have a con-

structive proof of this, I would very much like to see it!) For the inductive

step in our proof, will make use of the following.
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Lemma 5.1 Let X = R3 Ø {O}, the complement of a point O ∈ R3. Let Σ be a

set of mutually disjoint Euclidean lines in X, such that |Σ| < 2ℵ0. Then there

exists a line ` ⊂ X not meeting any line of Σ.

Proof. We first choose a point P ∈ R3, distinct from O, and not lying on any

line of Σ. (For example, let S ∈ R3 be a 2-sphere. Note that |S| = 2ℵ0, and

each line of Σ meets S in at most 2 points. So the lines of Σ meet S in at

most 2|S| < 2ℵ0 points. We may choose P ∈ S distinct from these points of

intersection, and also distinct from O.) Now consider a cone C ⊂ R3 with

vertex P . This cone has 2ℵ0 ‘ruling lines’, all of which pass through P . Each

line of Σ meets C in at most 2 points, so clearly we may choose a ruling line

` of C not passing through O, and not meeting any line of Σ.

We are now ready to prove Theorem 5.1. First we well-order the points

of X = R3 Ø {O} as

X = {Pα : α ∈ A}.

We may further assume that A is the smallest ordinal of cardinality 2ℵ0. We

will recursively define sets Σα (for α ∈ A) consisting of mutually disjoint

lines in X, such that

(i) |Σα| à |α| < 2ℵ0;

(ii) Pα lies on some line of Σα, for all α ∈ A; and

(iii) Σα ⊆ Σβ, whenever α < β, α,β ∈ A.

To do this, let α ∈ A; we want to define Σα. If α is a limit ordinal, we set

Σα =
⋃

β<α Σβ .

Now consider a successor ordinal α = β+ 1. If Pβ ∈
⋃

Σβ, we simply take

Σβ+1 = Σβ . Otherwise by Lemma 5.1 we may choose a line ` in X disjoint

from {O} ∪
(⋃

Σβ

)

, and we take Σβ+1 = Σβ ∪ {`}. The required properties (i),

(ii), (iii) hold by induction.

Clearly the set of lines Σ =
⋃

α∈A Σα is a partition of X into lines.
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