
Transcendence of e and π

Despite the fact that most real numbers (and most complex numbers) are transcendental,

it is typically very hard to verify the transcendence of any specific number. The first

specific number shown (by Liouville in 1844) to be transcendental, is the constant

∞∑
n=1

10−n! = 0.
1̂

1
2̂

1000
6̂

100000000000000000
2̂4

1000 . . . ;

but this constant is of essentially no value other than what it was contrived for: to eas-

ily verify its transcendence. The most important transcendental numbers in nature are e

and π, which were shown to be transcenden-

tal by Hermite and Lindemann in 1873 and

1882, respectively. It is now known that eπ is

transcendental, but it is not known whether

or not πe is transcendental; for all we know,

πe might even be rational! (but probably

not). Similarly, we do not know that π + e

is irrational, or that πe is irrational; but we

do that at least one of π + e and πe is tran-

scendental!

The proofs of transcendence of e and of π that we give here, are simplified versions1

of the original proofs due to Hermite and Lindemann. Before tackling the more difficult

questions of transcendence, we warm up by proving irrationality. And since e is easier

than π, we start with:

Theorem. The number e is irrational.

1 See I. Stewart, Galois Theory, 3rd ed., Chapman & Hall, 2004. The proof of the transcendence of
π given by Stewart, is adapted from I. Niven, ‘The transcendence of π’, Amer. Math. Monthly 46 (1939),
469–471. To Stewart’s exposition I have added some corrections and further explanations, and probably my
own mistakes.
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Proof. Suppose e = a
b where a, b are relatively prime positive integers. We must have

b > 2 since e /∈ Z. Multiplying e =
∑∞
n=0

1
n! by b!, we obtain

(b−1)!a︸ ︷︷ ︸
integer

= b!e = b!+b!+
b!

2!
+
b!

3!
+ · · ·+b+1︸ ︷︷ ︸

integer

+
1

b+1
+

1

(b+1)(b+2)
+

1

(b+1)(b+2)(b+3)
+ · · ·︸ ︷︷ ︸

fractional terms

.

This forces the fractional terms on the right to sum to an integer; however,

0 <
1

b+1
+

1

(b+1)(b+2)
+

1

(b+1)(b+2)(b+3)
+ · · ·

<
1

b+1
+

1

(b+1)2
+

1

(b+1)3
+ · · · (a geometric series)

=
1

b

< 1,

contradicting our deduction that this sum is an integer.

We will make frequent use of Leibniz’ Formula for the k-th derivative of a product:

dk

dxk
u(x)v(x) =

k∑
j=0

(
k

j

)
u(j)(x)v(k−j)(x).

This is easily proved by induction, using the usual product rule for differentiation.

Lemma. Let a
b ∈ Q be a reduced fraction, and n > 0. Define f(x) = 1

n!x
n(a− bx)n.

Then for every k > 0, the k-th derivative f (k) satisfies f (k)(0) = (−1)kf (k)
(
a
b

)
∈ Z.

Proof. Observe that

f
(
a
b − x

)
= 1

n!

(
a
b − x

)n
(a− a+ bx)n = 1

n!

(
a− bx

)n
xn = f(x).

Taking the k-th derivative yields

(*) f (k)
(
a
b

)
= (−1)kf (k)(0).

Now write f(x) = u(x)v(x) where u(x) = 1
n!x

n and v(x) = (a− bx)n. Since

u(j)(0) =

{
1, if j = n;
0, otherwise,
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by Leibniz’ Formula we obtain

f (k)(0) =

k∑
j=0

(
k

j

)
u(j)(0)v(k−j)(0) =

(
k

n

)
v(k−n)(0).

Since deg v(x) = n, we have f (k)(0) = 0 unless k 6 n 6 2n, in which case

f (k)(0) =

(
k

n

)
v(k−n)(0) =

(
k

n

)
n(n−1)(n−2) · · · (n− (k−n)+1)(−b)k−n ∈ Z.

The result follows by (*).

Theorem. The number π is irrational.

Proof. Suppose π = a
b with a, b ∈ Z relatively prime. For fixed n > 1, define

F (x) = f(x)− f ′′(x) + f (4)(x)− f (6)(x) + · · ·+ (−1)nf (2n)(x)

where f(x) = 1
n!x

n(a− bx)n as above. Since

d

dx

[
F ′(x) sinx− F (x) cosx

]
= [F ′′(x) + F (x)] sinx = f(x) sinx,

we have∫ π

0

f(x) sinx dx =
[
F ′(x) sinx− F (x) cosx

]π
0

= F (0)− F (π) = F (0)− F
(
a
b

)
∈ Z.

On the interval [0, π], the function f(x) = 1
n!

(
ax − bx2

)n
is maximized at the midpoint

a
2b = π

2 , so

0 <

∫ π

0

f(x) sinx dx < π
n!

(
π2

4

)n → 0 as n→∞.

For some n > 1, it follows that 0 <
∫ π
0
f(x) sinx dx < 1, contradicting the fact that the

integral is an integer.
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Theorem (Hermite, 1873). The number e is transcendental over Q.

Proof. Suppose there exist a0, a1, . . . , am ∈ Z such that

a0 + a1e+ a2e
2 + · · ·+ ame

m = 0.

We may assume a0am 6= 0, and we seek a contradiction. Consider the polynomial

f(x) = 1
(p−1)!x

p−1(x− 1)p(x− 2)p · · · (x−m)p ∈ Q[x]

of degree mp + p − 1 where p is a prime number larger than max{m, |a0|} (but fixed for

the moment). Note that for 0 < x < m, we have

|f(x)| 6 mp−1(mp)m

(p− 1)!
=

mmp+p−1

(p− 1)!
.

Following a trick due to Hurwitz, we define

F (x) = f(x) + f ′(x) + f ′′(x) + · · ·+ f (mp+p−1)(x).

Since f (mp+p)(x) = 0, we have

d

dx

[
e−xF (x)

]
= [F ′(x)− F (x)]e−x = −e−xf(x),

so

aje
j

∫ j

0

e−xf(x) dx = −ajej
[
e−xF (x)

]j
0

= aje
jF (0)− ajF (j).

Summing over j gives

(†)
m∑
j=0

aje
j

∫ j

0

e−xf(x) dx = −
m∑
j=0

ajF (j) = −
m∑
j=0

mp+p−1∑
i=0

ajf
(i)(j).

Evidently, f (i)(j) is an integer divisible by p, unless j = 0 and i = p− 1:

• For j ∈ {1, 2, . . . ,m}, we factor f(x) = u(x)v(x) where u(x) = 1
(p−1)! (x − j)

p and

v(x) ∈ Z[x]. Since

u(i)(j) =

{
0, for i 6= p;
p, for i = p,

Leibniz’ Formula gives f (i)(j) ∈ pZ for all i in this case.
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• For j = 0, use the factorization f(x) = u(x)v(x) where u(x) = 1
(p−1)!x

p−1 and v(x) ∈
Z[x]. In this case

u(i)(0) =

{
0, for i 6= p− 1;
1, for i = p− 1

and Leibniz’ Formula gives

f (i)(0) =
(
i

p−1
)
v(i−p+1)(0) ∈ Z.

Moreover, the binomial coefficient
(
i

p−1
)

is divisible by p unless i = p − 1, in which

case we obtain

f (p−1)(0) = v(0) = (−1)p(−2)p · · · (−m)p = ±m!p.

This integer is not divisible by p since we have chosen the prime p > m.

Now the right side of (†) is an integer congruent (mod p) to −a0f (p−1)(0) = ∓a0m!p, which

is not divisible by p (by choice of the prime p). In particular,

(‡)
m∑
j=0

aje
j

∫ j

0

e−xf(x) dx = Np, a nonzero integer.

A contradiction follows by observing that the left side of (‡) tends to 0 for p sufficiently

large: ∣∣∣∣∫ j

0

e−xf(x) dx

∣∣∣∣ 6 ∫ ∞
0

e−x|f(x)| dx <
mmp+p−1

(p− 1)!
→ 0 as p→∞.

Before showing the transcendence of π, we recall the elementary symmetric polynomi-

als
s0(x1, x2, . . . , xn) = 1;

s1(x1, x2, . . . , xn) = x1 + x2 + · · ·+ xn;

s2(x1, x2, . . . , xn) =
∑

16i<j6n

xixj = x1x2 + x1x3 + · · ·+ xn−1xn;

...

sk(x1, x2, . . . , xn) =
∑

16i1<i2<···<ik6n

xi1xi2 · · ·xik ;

...

sn(x1, x2, . . . , xn) = x1x2 · · ·xn.
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Note that sk(x1, x2, . . . , xn) is a polynomial in x1, x2, . . . , xn with
(
n
k

)
terms, and that

(t+ x1)(t+ x2) · · · (t+ xn) =
n∑
k=0

sn−k(x1, x2, . . . , xk)tk;

thus the coefficients in any monic polynomial are, up to ± signs, the elementary symmetric

polynomials in the roots.

A polynomial f(x1, x2, . . . , xn) is called symmetric if it is unchanged under arbitrary

permutations of its n arguments; i.e. if

f(xσ(1), xσ(2), . . . , xσ(n)) = f(x1, x2, . . . , xn)

for each σ ∈ Sn; here Sn is the group of all n! permutations of {1, 2, 3, . . . , n} (i.e. bi-

jections from the set {1, 2, . . . , n} to itself). Clearly each sk(x1, x2, . . . , xn) is symmetric

in this sense, thereby justifying the name ‘elementary symmetric polynomials’. More

generally, every polynomial P (s1, s2, . . . , sn) in the elementary symmetric polynomials

sk = sk(x1, x2, . . . , xn), with coefficients in Q (or in Z) is symmetric in x1, . . . , xn. We will

require the converse of this statement: the Fundamental Theorem of Invariant Theory2

(at least for the case of Sn permuting coordinates). This states that every symmetric

polynomial f(x1, x2, . . . , xn) ∈ Q[x1, x2, . . . , xn] (or in Z[x1, x2, . . . , xn]) has the form

f(x1, x2, . . . , xn) = P (s1, s2, . . . , sn)

for some polynomial P (t1, . . . , tn) ∈ Q[t1, . . . , tn] (or in Z[t1, . . . , tn], respectively). The

proof is by straightforward induction on the degree, yet we omit it; and in lieu of a proof,

we give a simple example for n = 3: The polynomial x3 + y3 + z3 is symmetric in x, y, z,

so it should be possible to write this as a polynomial in

s1 = x+y+z, s2 = xy+xz+yz, and s3 = xyz

with integer coefficients. The desired expression is given by

s31 − 3s1s2 + 3s3 = (x+y+z)3 − 3(x+y+z)(xy+xz+yz) + 3xyz = x3+y3+z3.

2 See e.g. P. Olver, Classical Invariant Theory, Cambridge Univ. Press, 1999, p.75.
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Theorem (Lindemann, 1882). The number π is transcendental over Q.

Proof. Suppose π is algebraic. Since i =
√
−1 is algebraic (of degree 2), it follows that πi

is also algebraic; let g1(x) ∈ Q[x] be its minimal polynomial, say of degree n. Over C we

can factor

g1(x) = (x− α1)(x− α2) · · · (x− αn)

where α1 = πi. By the preceding remarks,

g1(x) = xn − s1xn−1 + s2x
n−2 + · · ·+ (−1)n−1sn−1x+ (−1)nsn

where s1, s2, . . . , sn are the elementary symmetric polynomials in α1, α2, . . . , αn. Since

g1(x) ∈ Q[x], we have

s1, s2, . . . , sn ∈ Q.

Denote [n] := {1, 2, . . . , n}. For each subset J = {j1, j2, . . . , jm} ⊆ [n] of size |J | = m,

define

αJ =
∑
j∈J

αj = αj1 + αj2 + . . .+ αjm .

For each m ∈ [n], define

gm(x) =
∏
J⊆[n]
|J|=m

(x− αJ) =
∏

16j1<j2<···<jm6n

(x− αj1 − αj2 − · · · − αjm),

a polynomial of degree
(
n
m

)
. Note that for m = 1 we obtain the polynomial previously

called g1(x), so our notation is consistent. Also the special case m = n yields

gn(x) = x− α1 − α2 − · · · − αn = x− s1.

Technically the case m = 0 should give g0(x) = 1, but we really only need g1(x), . . . , gn(x).

If we now expand

gm(x) = a0 + a1x+ a2x
2 + · · ·+ a(nm)x

(nm),

then each coefficient a` = a`,m(α1, α2, . . . , αn) is symmetric in α1, α2, . . . , αn, since any

permutation of the αj ’s will also permute the
(
n
m

)
subsets J ⊆ [n] of size m, leaving the

polynomial gm(x) unchanged. By the Fundamental Theorem of Invariant Theory, there

exists a polynomial P`,m in n variables, with rational coefficients, such that

a` = a`,m(α1, α2, . . . , αn) = P`,m(s1, s2, . . . , sn).
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However, s1, s2, . . . , sn ∈ Q as noted above; so a` ∈ Q and we deduce that

gm(x) ∈ Q[x].

It may happen that gm(x) is divisible by xν ; this will happen if there are ν subsets J ⊆ [n]

of size |J | = m satisfying αJ ∈ {0, ±2πi, ±4πi, . . .}. We factor out these trivial factors,

yielding

gm(x) = xν g̃m(x) where g̃m(x) ∈ Q[x], g̃m(0) 6= 0.

Since g1(x) is irreducible, however, we have g̃1(x) = g1(x). Next, define

g(x) = cg̃1(x)g̃2(x) · · · g̃n(x) ∈ Z[x]

where c is the smallest positive integer for which this product has integer coefficients (i.e.

c is the least common denominator of all coefficients in
∏
m g̃m(x) ∈ Q[x]). Because we

have eliminated all factors xν , we have g(0) 6= 0. Note that

g(x) = c
∏
J⊆[n]

αJ /∈2πiZ

(t− αJ) = c(t− β1)(t− β2) · · · (t− βr)

where we have indexed the values of αJ /∈ 2πiZ as β1, . . . , βr. Later we will also require

the expansion

g(x) = cxr + cr−1x
r−1 + · · ·+ c1x+ c0, ci ∈ Z, c0 6= 0.

By Euler’s Formula, eπi + 1 = 0 so

(1) (eα1 + 1)(eα2 + 1) · · · (eαn + 1) = 0.

Now expand (1) into 2n terms by the distributive law. These terms are indexed by the 2n

subsets J ⊆ [n], and a typical term has the form
∏
j∈J e

αj = eαJ . At least one such term

(the constant term corresponding to J = ∅) is 1; let us say that there are exactly k > 1

terms equal to 1 in this sum (i.e. k subsets of J ⊆ [n] for which αj ∈ 2πiZ). The remaining

terms eαJ 6= 1 are simply eβ1 , eβ2 , . . . , eβr with βj as above; here r = deg g(x) = 2n − k.

Now the expansion of (1) reads as

(2) eβ1 + eβ2 + · · ·+ eβr + k = 0, k > 1.

Define

f(x) =
csxp−1g(x)p

(p− 1)!
∈ Q[x]

8



where s = rp−1 and p is a large prime number; and set

F (x) = f(x) + f ′(x) + f ′′(x) + · · ·+ f (s+p)(x).

Since deg f(x) = rp+ p− 1 = s+ p, we have f (s+p+1)(x) = 0. Again using Hurwitz’ trick,

d

dx

[
e−xF (x)

]
= −e−xf(x)

so

−
∫ x

0

e−yf(y) dy = −F (0) + e−xF (x).

Substituting y = tx yields

−x
∫ 1

0

e(1−t)xf(tx) dt = −exF (0) + F (x).

Evaluate at x = β1, β2, . . . , βr and sum to get

(3) −
r∑
j=1

βj

∫ 1

0

e(1−t)βjf(tβj) dt = −(eβ1 + · · ·+ eβr )F (0) +
r∑
j=1

F (βj)

= kF (0) +
r∑
j=1

s+p∑
m=0

f (m)(βj).

Our strategy, as before, is to show that for any sufficiently large prime p, the right hand

side of (3) is a nonzero integer; but the left side→ 0 as p→∞. To this end, we first claim

that

(4)
r∑
j=1

s+p∑
m=0

f (m)(βj) is an integer divisible by p.

To see this, write f(x) = pcsh(x) where h(x) = 1
p!x

p−1g(x)p. If m < p, then the polynomial

h(m)(x) is divisible by g(x)p−m and so h(m)(βj) = 0. Also since h(x) = 1
p!

∑
j ajx

j where

aj ∈ Z, we have h(p)(x) =
∑
j

(
p+j
j

)
ap+jx

j ∈ Z[x]. Thus h(m)(x) ∈ Z[x] for all m > p. Since∑r
j=1 h

(m)(βj) is a symmetric polynomial of degree at most rp−1 = s+p (assuming m > p)

in β1, . . . , βr with integer coefficients,
∑r
j=1 h

(m)(βj) is a polynomial in c0
c ,

c1
c , . . . ,

cr−1

c

with integer coefficients. (The values
cj
c are the coefficients in 1

cg(x) =
∏
j(x− βj); hence

the elementary symmetric polynomials in β1, . . . , βr take values ± c0c , . . . ,±
cr−1

c . Here we

have used the Z-version of the Fundamental Theorem of Invariant Theory from p.6.) Since

deg h(m)(x) 6 s for m > p, the factor cs clears all denominators to yield
∑r
j=1 c

sh(m)(βj) ∈
Z. After multiplying by p and summing over m, we obtain (4).
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Turning now to the constant F (0) in (3), let us write f(x) = u(x)v(x) where u(x) =
1

(p−1)!c
sxp−1 and v(x) = g(x)p. Since

u(j)(0) =

{
cs, if j = p− 1;

0, otherwise,

by Leibniz’ Formula we obtain

f (m)(0) =

(
m

p− 1

)
csv(j)(0) =

(
m

p− 1

)[ dj
dxj

g(x)p
]
x=0

.

This vanishes for m 6 p− 2; and in general v(j)(0) ∈ Z since g(x) ∈ Z[x]. Also for m > p,

the binomial coefficient
(
m
p−1
)

is divisible by p, so

F (0) =

s+p∑
m=0

f (m)(0) = csg(0)p + pMp = cscp0 + pMp

for some integer Mp.

Henceforth assume that the prime p > max{k, c, c0}. Since kcscp0 6= 0, it follows that

the right side of (3) is an integer not divisible by p; in particular, the right side of (3) is

nonzero.

In order to obtain a final contradiction, it remains only to show that the left side of (3)

converges to 0 as the prime p→∞. We have

|f(tβj)| 6
|c|s|βj |p−1mp

j

(p− 1)!

where

mj = sup
06t61

|g(tβj)|.

Finally, if we let

B = max
16j6r

∣∣∣∣∫ 1

0

e(1−t)βjdt

∣∣∣∣ ,
then∣∣∣∣∣∣−

r∑
j=1

βj

∫ 1

0

e(1−t)βjf(tβj) dt

∣∣∣∣∣∣ 6
r∑
j=1

|βj |p|c|smp
jB

(p− 1)!
=

B

|c|

r∑
j=1

|βjcrmj |p

(p− 1)!
→ 0 as p→∞,

the desired final contradiction.
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