
Changing the Coefficient Ring

1. Modules

Let R be a ring with identity. A (left) R-module is an additive abelian group M together

with an operation of ‘scalar multiplication’ R ×M → M such that for all r, s ∈ R and

x, y ∈M we have

(i) r(x+ y) = rx+ ry;

(ii) (r + s)x = rx+ sx;

(iii) 1x = x;

(iv) r(sx) = (rs)x.

For example a module over a field R = F is the same thing as a vector space over F . An

additive abelian group is the same thing as a module over the ring Z. For arbitrary R,

the free module of rank n over R is a module isomorphic to Rn = R ⊕ R ⊕ · · · ⊕ R. This

is a module over R with coordinatewise multiplication by R. However, if we consider Rn

as consisting of all n× 1 column vectors over R, then Rn it is also a module over the ring

Rn×n of all n× n matrices over R.

We shall primarily be concerned with the case R is commutative. In this case there

is no distinction between left and right R-modules. [In the case R is noncommutative,

we must distinguish between left R-modules and right R-modules because of (iv); in a

right R-module we have (xr)s = x(rs). A right module over R is the same thing as a left

module over the opposite ring R◦ which has the same elements and addition as R, but

with multiplication defined by r ◦ s = sr.]

A free module M over R is rather like a vector space in that it has a set of generators

(which generate M by taking R-linear combinations), and a minimal generating set is

rather like a basis: every minimal generating set has the same cardinality r which is the

rank of M .

An arbitrary Z-module (i.e. additive abelian group) G is a direct sum of cyclic groups,

including possibly some infinite and some finite cyclic groups. Thus G ∼= Zr⊕T (G) where

T (G) is the torsion subgroup of G, defined as the set of elements of G of finite order. Also

r is called the rank of G. As a Z-module, G is free (of rank r) iff T (G) = 0.

If M and N are R-modules then an R-module homomorphism from M to N is a map

f : M → N satisfying f(rx+ r′x′) = rf(x) + r′f(x′) for all r, r′ ∈ R and x, x′ ∈ M . The

usual isomorphism theorems for groups and rings extend to modules; for example the First
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Isomorphism Theorem gives M/ ker f ∼= f(M) ≤ N . The set HomR(M,N) consisting of

all R-module homomorphisms from M to N is itself an R-module. In particular we have

the dual R-module M∗ = Hom(M,R). Also the collection of all endomorphisms of M ,

denoted End(M) = EndR(M) = HomR(M,M), is an R-module; but more than this,

since composition of elements of End(M) is defined, this makes End(M) a ring. It follows

that End(M) is in fact an R-algebra.

2. Tensor Products

Let R be a commutative ring with identity, and let M and N be R-modules. The tensor

product of M and N over R, denoted M ⊗RN or simply M ⊗N , is defined as the quotient

ring A/B where A is the free module generated by the symbols (x, y) where x ∈ M and

y ∈ N ; and B is the submodule generated by the expressions

(rx+ r′x′, y)− r(x, y)− r′(x′, y), (x, ry + r′y′)− r(x, y)− r′(x, y′)

where r, r′ ∈ R; x, x′ ∈M ; y, y′ ∈ N . Note that A is a free module of rank |M |·|N |, which

is often infinite. The coset (x, y) + B is denoted simply by x ⊗ y. Informally, M ⊗ N is

constructed by starting with R-linear combinations of the symbols x⊗y where x ∈M and

y ∈ N , then imposing the bilinearity conditions

(rx+ r′x′)⊗ y = r(x⊗ y) + r′(x′ ⊗ y), x⊗ (ry + r′y′) = r(x⊗ y) + r′(x⊗ y′).

Note that the only identities that hold in M ⊗N , are those that are deducible from these

bilinearity relations (just as the only relations that hold in a finitely presented group, are

those that are deducible from the defining relations). In general the elements of M⊗N are

not all of the form x⊗ y. The elements of this special form x⊗ y are called pure tensors,

and they generate M ⊗N as an R-module.

2.1 Example Let M = R3, N = C, R = R. Consider the standard basis {e=(1, 0, 0),

f=(0, 1, 0), g=(0, 0, 1)} for M = R3, and the standard basis {1, i} for N = C over R. Then

M ⊗N is a 6-dimensional vector space over R with basis

{e⊗ 1, e⊗ i, f ⊗ 1, f ⊗ i, g ⊗ 1, g ⊗ i}.

A general element of M ⊗N can be uniquely expressed in the form

a1(e⊗ 1) + a2(e⊗ i) + a3(f ⊗ 1) + a4(f ⊗ i) + a5(g ⊗ 1) + a6(g ⊗ i)
= (a1e+a3f+a5g)⊗ 1 + (a2e+a4f+a6g)⊗ i
= e⊗ (a1+a2i) + f ⊗ (a3+a4i) + g ⊗ (a5+a6i)
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where a1, . . . , a6 ∈ R. The middle of these expressions shows how to uniquely decompose

an arbitrary element of R3⊗C into its real part and its imaginary part, both of which are

vectors in R3. The latter formulation shows that R3 ⊗ C actually consists of all C-linear

combinations of the original basis vectors e, f, g ∈ R3, so that R3⊗C is the complexification

of the real vector space R3.

The latter example admits several generalisations.

2.2 Example. Suppose M is an m-dimensional vector space over a field F , and let

E ⊇ F be an extension field of degree n (i.e. E has dimension n over F ). Then M ⊗F E

may be regarded not only as an mn-dimensional vector space over F , but also as an m-

dimensional vector space over E. This is the most natural way to enlarge the field of

coefficients of a vector space.

2.3 Example. Even more generally, if M and N are vector spaces of dimension m

and n respectively, over a field F , then M ⊗F N is an mn-dimensional vector space over

F . Indeed if {v1, . . . , vm} and {w1, . . . , wn} are bases for M and N respectively, then

{vi⊗wj : 1≤i≤m, 1≤j≤n} is a basis for M ⊗N . This leads to our next example:

2.4 Example. Let M be the set of all m× 1 column vectors over F , and let N be the

set of all 1×n row vectors over F . Then M ⊗F N may be regarded as the set of all m×n
matrices over F , in such a way that for all

x =


x1
x2
...
xm

 ∈M, y = [y1, y2, . . . , yn] ∈ N

we have

x⊗ y = xy =


x1y1 x1y2 · · · x1yn
x2y1 x2y2 · · · x2yn

...
...

...
xmy1 xmy2 · · · xmyn

 ∈M ⊗F N.

Note that the matrix product xy is bilinear in both x and y as required. Also note that

the pure tensors x ⊗ y are just the matrices of rank ≤ 1. If r = min{m,n} then every

m × n matrix is expressible as a sum of r matrices of rank 1, so every vector in M ⊗ N
is expressible as a sum of r pure tensors, and in general no fewer. The apparent lack of

symmetry that asks us to write M as column vectors and N as row vectors, is explained

in the next example.

2.5 Example. Let V and W be vector spaces of dimension m and n over a field

F , respectively. Recall (Section 1) that Hom(V,W ) = HomF (V,W ) denotes the set of

all F -linear transformations V → W ; and V ∗ = HomF (V, F ) is the set of all F -linear
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transformations V → F , i.e. linear functionals on V . After choosing bases for V and W ,

we may express vectors in V and W as row vectors of size 1 ×m and 1 × n respectively;

also elements of Hom(V,W ) are represented as m×n matrices over F . Linear functionals

f ∈ V ∗ are represented as m× 1 matrices, i.e. column vectors over F . Indeed every linear

functional f ∈ V ∗ has the form

f(x) = [f1, f2, . . . , fm]


x1
x2
...
xm

 =
∑

1≤i≤m

fixi ∈ F

and so the matrix of f : V → F with respect to our basis for V , and the basis {1} for F ,

is [f1, f2, . . . , fm] where fi ∈ F . Now it is evident that the isomorphism in Example 2.4

represents the identity HomF (V,W ) ∼= V ∗ ⊗F W . A coordinate-free description of this

isomorphism is given by mapping

V ∗ ×W → Hom(V,W ), (f, w) 7→ f ⊗ w

where f ⊗ w : V →W is the linear transformation v 7→ f(v)w.

Why the need for the dual V ∗ in place of V in the latter example? One answer is that

we can replace V ∗ by V if we are only interested in V as an abstract n-dimensional vector

space over F , for then V ∗ is also n-dimensional over F and so Hom(V,W ) ∼= V ∗ ⊗W ∼=
V ⊗W . However, the isomorphism V ∗ ∼= V is not canonical (it requires first choosing

bases for V and V ∗, and there is no prefered choice of these bases). The comments in

Example 2.5 show that the isomorphism Hom(V,W ) ∼= V ∗ ⊗W is natural and canonical,

while the isomorphism with V ⊗W is not.

2.6 Example. Generalising the previous example, if R is any commutative ring with

identity, and M and N are R-modules, then HomR(M,N) ∼= M∗ ⊗N .

A more useful way of understanding M ⊗N than through the definition given above,

is in terms of its universal property: Suppose S is an R-module and f : M × N → S

satisfies

f(rx+ r′x′, y) = rf(x, y) + r′f(x′, y), f(x, ry + r′y′) = rf(x, y) + r′f(x, y′)

for all r, r′ ∈ R; x, x′ ∈M ; y, y′ ∈ N . Then there exists a unique R-module homomorphism

f̂ : M ⊗N → S such that the following diagram commutes:

M ×N M ⊗N

S

f̂f

.................................................................................................................................................... .................

...................................................................................................................................................
..

........
.......
..

............
.......
..
.............
....

..............................................................................................
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i.e. f(x, y) = f̂(x⊗y) for all (x, y) ∈M×N . This gives a way to interpret bilinear maps as

linear maps: doing so however requires replacing the domain M ×N by M ⊗N . Wherever

tensor products are used, it is most often this universal property of tensor products that is

important. In fact many books actually define tensor products in terms of this universal

property, as follows. Let W be an R-module, and let u : M ×N → W be R-bilinear, i.e.

u(rx+ r′x′, y) = ru(x, y) + r′u(x′, y) and similarly in the second argument. We call W (or

more precisely the pair (W,u)) a tensor product of M and N if for every R-bilinear map

f : M ×N → S, there is a unique R-linear map f̂ : W → S such that f = f̂ ◦ u. Now it is

easy to see from this definition that if a tensor product of M and N exists then it is unique

up to isomorphism. Then to prove existence one can use the quotient space construction

given above.

2.7 Example. Let V and W be real vector spaces, and let V̂ = V ⊗R C and Ŵ =

W⊗RC be the complexified vector spaces as in Examples 2.1, 2.2. (These are vector spaces

over C, such that dimC(V̂ ) = dimR(V ) and dimC(V̂ ) = dimR(V )). If f : V → W is a real

linear transformation then there is a unique C-linear map f̂ : V̂ → Ŵ extending f . This

follows from the universal property as follows. First observe that f : V →W gives rise to

a bilinear map

V × C→ Ŵ , (v, λ) 7→ f(v)⊗ λ.

By universality, there exists a unique R-linear map f̂ : V̂ → Ŵ such that f̂(v⊗λ) = f(v)⊗λ
for all λ ∈ C. But this property means that f̂ is C-linear. And if g : V̂ → Ŵ is

any C-linear map restricting to f , i.e. g(v⊗1) = f(v)⊗1, then C-linearity implies that

g(v⊗λ) = f(v)⊗λ = f̂(v⊗λ) for all λ ∈ C. Since V̂ is the real span of the vectors v⊗λ for

v ∈ V and λ ∈ C, this forces g = f̂ .

Of course in the finite-dimensional case any matrix for f (with real entries) becomes a

matrix for f̂ where we simply interpret the entries as complex numbers with zero imaginary

part.

3. Computing Tor

Let M and N be R-modules, where R is a commutative ring with identity. The R-module

Tor(M,N) is defined on p.263 of the textbook using free resolutions. We will not explain

this here. For now assume the formulas on p.265 for computing Tor(M,N). To compute

Tor(M,N) whenever M and N are Z-modules, it suffices to use formulas (1), (2) and (3),

together with the identity

Tor(Z/mZ, Z/nZ) ∼= Z/gZ where g = gcd(m,n)
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which follows from (5). For example

Tor
(
Z⊕(Z/4Z), (Z/2Z)⊕(Z/4Z)

)
∼= Tor

(
Z, (Z/2Z)⊕(Z/4Z)

)
⊕ Tor

(
Z/4Z, (Z/2Z)⊕(Z/4Z)

)
∼= 0⊕ Tor(Z/4Z, Z/2Z)⊕ Tor(Z/4Z, Z/4Z)

∼= (Z/2Z)⊕ (Z/4Z).

4. Exact Sequences

A sequence

· · · fn+2−→ Cn+1
fn+1−→ Cn

fn−→ Cn−1
fn−1−→ · · ·

(where the Ci’s are R-modules and each fi is an R-module homomorphism) is exact if,

for every n, the image fn+1(Cn+1) coincides with the kernel of fn : Cn → Cn−1 . A short

exact sequence is an exact sequence of the form

0 −→ A
f−→ B

g−→ C −→ 0.

This implies that f is injective, and so we may identify A with the submodule f(A) ⊆ B;

also g is surjective, so the First Isomorphism Theorem gives

C ∼= B/A ∼= B/f(A).

The latter isomorphism is equivalent to the existence of the short exact sequence given

above. Given such an isomorphism, there may or may not exist a submodule U ⊆ B

complementary to A, i.e. satisfying B = U ⊕ A; but if such a submodule exists then we

must have U ∼= B/A ∼= C. In this case we say that the exact sequence splits. Note that

even if such a complementary submodule U ⊆ B exists, it need not be unique, nor is the

choice of such a complementary submodule U natural or canonical. For example the short

exact sequence of Z-modules (i.e. additive abelian groups) given by

0 −→ Z 2−→ Z −→ (Z/2Z) −→ 0

in which the arrow labeled ‘2’ is the map x 7→ 2x, is not split. Every exact sequence

of vector spaces is split, although the choice of complementary subspace is not unique in

general.

5. Homology with Coefficients

Let R be a commutative ring with identity, and let X be a topological space with a

simplicial subdivision. We denote by Cn(X;R) the set of n-chains of a topological space
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X with coefficients in R, i.e. the free R-module generated by the n-simplices. Then

Cn(X;R) = Cn(X)⊗ZR where Cn(X) = Cn(X;Z). The boundary maps ∂ are more than

homomorphisms of additive abeliean groups; they are R-module homomorphisms

· · · ∂−→ C3(X;R)
∂−→ C2(X;R)

∂−→ C1(X;R)
∂−→ C0(X;R) −→ 0.

Denote by Zn(X;R) the set of n-cycles, i.e. the kernel of ∂ : Cn(X;R)→ Cn−1(X;R). Also

denote by Bn(X;R) the set of n-boundaries, i.e. the image ∂(Cn+1(X;R)) ≤ Cn(X;R).

The n-th homology group of X with coefficients in R is the quotient group Hn(X;R) =

Zn(X;R)/Bn(X;R). The homology groups with coefficients in Z (the default) determine

the homology groups with coefficients in the arbitrary ring R; however the first guess that

Hn(X;R) = Hn(X) ⊗ R (where Hn(X) = Hn(X;Z)) is not quite correct. The correct

answer is given by

Universal Coefficient Theorem for Homology. We have a split exact sequence

0 −→ Hn(X)⊗R −→ Hn(X;R) −→ Tor(Hn−1(X), R) −→ 0.

Consequently

Hn(X;R) ∼=
(
Hn(X)⊗R

)
⊕ Tor(Hn−1(X), R)

(although there is no natural or canonical choice of complementary submodule isomorphic

to Tor(Hn−1(X), R)).

The statement of this result in the textbook (p.264) is somewhat more general in that

the coefficient ring R is replaced by an arbitrary additive abelian group G. My choice to

state these results using a ring R is not intended to limit you, but rather to encourage

you to think more concretely of rings such as Z, R and Fp = Z/pZ as typically arise in

practice. Note that if R = F is a field then Hn(X;F ) ∼= F r where r = dimF (Zn(X;F ))−
dimF (Bn(X;F )) and these vector space dimensions are easily computed by linear algebra.

•

•

•

•

....................................................................................................................
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.......
.......
.......
.......
.......
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.......
.......
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.......
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f
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α
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...β ......
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...............
.............
........
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...............
...................
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5.1 Example. Let X = P 2R, the real projective plane. We use the triangulation of

X given in the previous handout; see the figure above and recall that

H2(X) = H2(X;Z) = 0;

H1(X) = H1(X;Z) ∼= F2
∼= Z/2Z;

H0(X) = H0(X;Z) ∼= Z.
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Here F2 = {0, 1} is the field of order 2. The Universal Coefficient Theorem gives

H2(X;R) = 0;

H1(X;R) = 0;

H0(X;R) ∼= R

and

H2(X;F2) ∼= F2;

H1(X;F2) ∼= F2;

H0(X;F2) ∼= F2 .

These groups may be computed directly as follows: We have H2(X;R) = Z2(X;R)/〈0〉 ∼=
Z2(X;R) which is the set of all kα+ `β where k, ` ∈ R such that

0 = ∂(kα+ `β) = k(e+f+g) + `(e+f−g) = (k+`)(e+ f) + (k−`)g .

If R = Z or R then k+` = k−` = 0 implies k = ` = 0 and so H2(X;R) = 0. However, if

R = F2 then the solutions are given by k = ` ∈ F2 so H2(X;F2) ∼= 〈α+β〉F2
∼= F2.

Writing u = e + f ∈ C1(X;R) we have Z1(X;R) = 〈u, g〉R and B1(X;R) = 〈u+g,

u−g〉R = 〈u+g, 2g〉R ≤ Z1(X;R). For R = Z this gives H1(X) = {B1, g+B1} ∼= F2. For

R = R we have B1(X;R) = Z1(X;R) = 〈u, g〉R ∼= R2 and H1(X;R) = 0. For R = F2 we

have Z1(X;F2) = 〈u, g〉F2
∼= F2 and B1(X;F2) = 〈u+g〉F2

∼= F2 so subtracting dimensions

gives H1(X;F2) ∼= F2.

Also H0(X;R) = Z0(X;R)/B0(X;R) = 〈A,B〉R/〈A−B〉R. If R = Z then we have

H0(X;Z) = {kA+B0 : k ∈ Z} ∼= Z. If R = F is any field (such as R or F2) then

Z0(X;F ) = 〈A,B〉F ∼= F 2 and B0(X;F ) = 〈A−B〉F ∼= F so subtracting dimensions gives

H0(X;F ) ∼= F .
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