
 

More Straightedge and Compass Constructions 
 

Consider the following construction problem:  You are given a rectangle with sides b and c, and you 

are asked how long to make a second rectangle with width a, so that its area equals that of the first 

rectangle.  Of course we are being asked to solve the equation ax = bc for the unknown distance x; 

but rather than solve this equation algebraically (which is trivial) we might ask rather to construct a 

line segment of the required length x, using straightedge and compass, given line segments of 

lengths a, b and c. 

 

 

 

 

 

 

A solution of this problem is given as follows. 

 

Lemma 1.  Given distances a, b, c, one may construct (using straightedge and compass) a distance x 

such that ax = bc. 
 

Proof.  Use the compass to mark points O, A and 

B on a line l such that OA = a and OB = b, as 

shown.  Draw a second line m through A.  (The 

choice of angle between l and m is arbitrary.)  

Locate a point C on m such that AC = c.  

Construct the unique line n through B parallel to 

OC.  Let X be the point of intersection of m and n.  

The triangles AOC and ABX are similar (since 

corresponding angles are equal) so corresponding 

sides are in the same proportion; in particular 
 

c

a
= 

AC

AO
 = 

AX

AB
 = 

CX

OB
 = 

x

b
  

where x = CX.  So this gives a construction of the required distance.                                                 □ 
 

Lemma 2.  Given two disjoint circles C1 and C2 which are not concentric, one may construct a circle 

C that inverts the first two circles to two concentric circles C1′ and C2′. 
 

Proof.  Let l be the line joining the centers of C1 and C2 .  (To construct l we must first find the 

centers of C1 and C2 , assuming these are not already known; this is done as in HW3.  By assumption 

these two centers are distinct, and so l is the line joining them.)  By symmetry, the circle C should 

have center lying on the line l ; but where?  Let A and B be the points of intersection of l with C1 ; 

and D and E are the points of intersection of l with C2 , labeled in the order shown.  (We have 

pictured only the case that C2 lies inside C1 ; but the cases where C1 lies inside C2 , or neither circle 

lies inside the other, may be solved in a similar fashion; we leave this as an exercise.)  We first 

construct a circle γ orthogonal to l, C1 and C2 .  Such a circle has center O on l, and radius r = OT1 = 

OT2 where T1 and T2 are points of contact of tangent lines to C1 and C2 passing through O. 
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The position of the point O on 

the line l is determined by the 

length x = OA.  Note that the 

points A and B are inverse with 

respect to γ ; so also the points D 

and E.  Therefore 
 

OA ∙ OB = r2 = OD ∙ OE , 
 

i.e. 
 

x(AB + x) = (AD + x)(AE + x). 
 

Fortunately the x2 terms cancel, 

leaving us with the relation 

ax = AD ∙ AE  to solve for x, 

where  a = AB – AD – AE 

= BE – AD.  By Lemma 1 we 

may construct a line segment of the required length x and therefore locate the center O of the circle 

γ.  To find the radius of γ we require only the radius r = OT1 = OT2 ; the construction of the length of 

a tangent from a given point O to a given circle (C1 or C2) has been described previously. 

 

 Now let P be one of the points of intersection of l with γ, and let C be any circle centered at 

P.  Then inversion in C must take l to l, and γ to a line γ′ ; and it must take C1 and C2 to two circles 

C1′ and C2′, both of which are orthogonal to l and to γ′ .  Therefore C1′ and C2′ both have center 

given by the point l ∩ γ′.                                                                                                                      □ 
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Similarly one may ask: if the circles C1 and C2 meet, to what extent can the picture be simplified 

using an inversion?  If C1 and C2 are tangent at a point P, then by inverting with respect to a circle 

centered at P, the circles C1 and C2 are sent to a pair of parallel lines.  And if C1 and C2 meet at two 

distinct points P and Q, then by inverting with respect to a circle centered at P, the circles C1 and C2 

are sent to a pair of intersecting lines. 

 
                                              Steiner’s Porism 

 

An example of how inversion can be used to simplify a 

geometric problem, is the following.  Consider non-intersecting 

circles C1 and C2 , and a chain of circles ‘between’ C1 and C2 as 

shown: each circle in the ring is tangent to both C1 and C2 ; 

moreover adjacent circles in the chain are also tangent to each 

other.  In the figure shown at the right, it is not possible to 

complete the chain of seven circles to a complete ring (the first 

and last circles in the chain do not tough, and there is not 

enough space in between to fit an eighth circle). 

 

 

 
 

 

In the next figure at the left I have reduced the radius of C2 

just enough so that the seven intermediate circles in the chain 

become slightly larger and the first and last circles in the 

chain just manage to touch, forming a closed ring of seven 

circles.  Of course by changing the size or position of the 

circles C1 and C2 , we may obtain similar pictures with rings 

of any number of circles exceeding two. 

 

 

 

 

 

What is not clear is: does the position of the first 

circle in the ring matter?  i.e. if the first circle in 

the ring were placed in a different position 

(but still tangent to both C1 and C2  as before), 

and constructing the ring of circles 

between C1 and C2 as before, will we still obtain 

a ring with the same number of circles?  The 

figure at the right suggests that the answer is yes; 

but why? 
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One case in which the answer to this question is obviously ‘yes’ 

is the special case of two circles C1′ and C2′ which are concentric 

(i.e. they have the same center) for then if the radii of C1′ and C2′ 

are such that there exists a ring of circles between C1′ and C2′ (as 

shown in the figure at the left) then clearly the position of the 

first circle in the ring is not 

critical; any other position is 

obtained from the first by a 

rotation about the common center 

of C1′ and C2′ , and this rotation 

will transform one ring of 

intermediate circles to another 

(as shown on the right) with the 

same number of circles in the ring.  (Think of the ball 

bearings in the hub of a bicycle wheel, if you are familiar 

with their design.)  What inversion shows us, is that 

if this property holds for concentric circles, then it 

holds also in the general case considered above (arbitrary 

non-intersecting circles C1 and C2).  This is because by 

Lemma 2, we can perform an inversion that sends 

the circles C1 and C2 to concentric circles C1′ and C2′ ; and since inversion takes circles to circles, it 

will take any chain of intermediate circles between C1 and C2 , to a similar chain of intermediate 

circles between C1′ and C2′, and conversely. 

 

Thus the answer to the question on the previous page is ‘yes’: the position of the first circle in the 

chain of intermediate circles does not affect whether the chain completes to a ring, or how many 

intermediate circles constitute this ring. 

 

A live demonstration of this phenomenon is available using the applet found at 

         http://members.ozemail.com.au/~llan/steiner.html 

where it is possible to choose the number of circles in the ring. 
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