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1. Separation Axioms

Let X be a topological space. We say that

• Points in X are closed if for every pair of points x 6= y, x has an open neighbourhood

not containing y.

• X is Hausdorff if every pair of points x 6= y has a pair of disjoint open neighbourhoods

(x ∈ U , y ∈ V , U ∩ V = ∅).

• X is regular if for every closed set K ⊂ X and every point x /∈ K, there are disjoint

open sets U, V ⊂ X with x ∈ U and K ⊆ V .

• X is normal if for every pair of disjoint closed sets K,L ⊂ X, there are disjoint open

sets U, V ⊂ X with K ⊆ U and L ⊆ V .

• X is completely regular if for every closed set K ⊂ X and every point x /∈ K, there

exist a continuous function f : X → [0, 1] such that f(x) = 0 and f(y) = 1 for all

y ∈ K.

Many properties similar to these are considered in the literature—we aim not for complete-

ness, but just to list some of the most common and most important of these properties.

Care is needed in reading the mathematical literature, as some authors preface their work

saying that they only consider those topological spaces satisfying certain of these prop-

erties, effectively adding these properties as additional axioms to those we have used to

define a topology. Other designations such as T2, T3, etc. are often used in place of the

words we have used. A reasonable overview of these separation axioms, and an explanation

of which combinations of which properties imply which others, can be found in [SS]. . . but
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be warned: the terminology, and the designations Ti, are used inconsistently throughout

much of the literature, including [SS].

Here are a few facts about these separation properties that we will use.

1.1 Proposition. Every compact Hausdorff space has closed points, and is both

regular and normal.

Proof. Let X be a compact Hausdorff space. It is clear that points in X are closed. Let

K ⊂ X be closed and suppose x /∈ K. For every point y ∈ K, choose disjoint open sets Uy
and Vy with x ∈ Uy and y ∈ Vy. Note that K ⊆

⋃
y∈K Vy. Since K is a closed subset of a

compact space, K is compact; so

K ⊆ V := Vy1 ∪ Vy2 ∪ · · · ∪ Vyn

for some y1, y2, . . . , yn; and

x ∈ U := Uy1 ∩ Uy2 ∩ · · · ∩ Uyn .

Moreover U and V are disjoint open sets, so X is normal.

Now let K,L ⊂ X be disjoint open sets. Since X is regular, for each x ∈ K there

exist disjoint open sets Ux, Vx ⊂ X such that x ∈ Ux and L ⊆ Vx. Since the sets Vx form

an open cover of the compact set L, there exist x1, x2, . . . , xm ∈ K such that

L ⊆ V := Vx1
∪ Vx2

∪ · · · ∪ Vxm
.

Also

K ⊆ U := Ux1
∩ Ux2

∩ · · · ∩ Uxm
.

Since U and V are disjoint open sets, X is normal.

Not every subspace of a normal space is normal; but we will soon see (using Urysohn’s

Lemma) that every subspace of a normal space is completely regular. Here are some easier

results of this nature:

1.2 Proposition.

(a) Every closed subspace of a normal space is normal.

(b) Every completely regular space is regular.

(c) Every subspace of a completely regular space is completely regular.

Proof. (a) Consider a closed subset X ⊆ Y where Y is normal. Note that a subset K ⊆ X
is closed in X, iff it is closed in Y . (To see this, observe that a closed set in X has the

form K = K ′ ∩X where K ′ is closed in Y ; but then K is also closed in Y .) So given two
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disjoint closed subsets K,L ⊂ X, there exist disjoint open sets U, V ⊂ Y such that K ⊆ U
and L ⊆ V . Now U ∩X and V ∩X are disjoint sets, open in X, which separate K and L.

(b) Suppose X is completely regular. Consider a closed set K ⊂ X and a point x /∈ K.

There exists a continuous map f : X → [0, 1] such that f takes values 0 and 1 on x and K

respectively. Then U = f−1(
[
0, 13
)
) and V = f−1(

(
2
3 , 1
]
) are disjoint open sets separating

x from K.

(c) Let X ⊆ Y where Y is completely regular. Let K ⊂ X be closed in X, so that

K = K ′ ∩X for some closed set K ′ ⊂ Y . If x ∈ X ................K then x /∈ K ′, so there exists a con-

tinuous function f : Y → [0, 1] separating x from K ′. The restriction f ′|X is a continuous

function X → [0, 1] separating x from K, so X is completely regular.

It is also easy to prove that every metric space is Hausdorff, regular and normal. In

fact if X is a metric space with points x 6= y, let δ = d(x, y) > 0; then Bδ/2(x) and Bδ/2(y)

are disjoint open neighbourhoods separating x and y, so X is Hausdorff. It is easy to see

that the corresponding distance function d : X×X → [0,∞) is continuous. We may define

the distance from a point x ∈ X to an arbitrary subset S ⊆ X by

d(x, S) = inf
y∈S

d(x, y);

and then it is easy to show that the map X → [0,∞) defined by x 7→ d(x, S) is continuous;

and d(x, S) = 0 iff x ∈ S. Now if K and L are disjoint closed subsets of X, then the

function f : X → [0, 1]

f(x) =
d(x,K)

d(x,K) + d(x, L)

is a continuous function separating K from L; it takes values 0 and 1 on K and on L

respectively.

2. Urysohn’s Lemma

Informally, a topological space is normal iff any two disjoint closed

sets can be separated by disjoint open sets. We may ask for an

apparently stronger condition, namely that any two disjoint sets

K,L are separated by a continuous function f : X → [0, 1] if f(x) =

0 for all x ∈ K, and and f(y) = 0 for all y ∈ L. However, this

turns out to be equivalent*:

* This is in contrast to the fact that not every regular space is completely regular. While
there is a notion of completely normal spaces, it evidently does not mean that disjoint closed
sets can be separated by a function. (A space is completely normal if every subspace is
normal.)
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2.1 Theorem (Urysohn’s Lemma). Let X be a topological space. Then X is

normal iff any two disjoint closed sets can be separated by a continuous function

X → [0, 1].

The proof we give is a hybrid of Munkres’ proof with the usual proof found in other sources.

In preparation, we observe the following equivalent formulation of normality:

2.2 Lemma. Let K be a closed subset of a normal space X, and suppose K ⊆ V

for some open set V ⊆ X. Then there exists an open set U such that

K ⊆ U ⊆ U ⊆ V.

Proof. Since K and X................V are disjoint open sets, using normality we get disjoint open sets

U, V1 such that K ⊆ U and X ................V ⊆ V1; then V ⊇ X ................V1 ⊇ U .

Proof of Theorem 2.1. Let K,L be disjoint closed sets in X. Suppose there is a continuous

function f : X → [0, 1] such that f(x) = 0 for all x ∈ K, and f(y) = 1 for all y ∈ L. Then

U = f−1(
[
0, 13
)
) and V = f−1(

(
2
3 , 1
]
) are disjoint open sets separating K from L.

Conversely, suppose X is normal, and let K,L ⊆ X be disjoint closed sets. Let

U1 = X ................L. By Lemma 2.2 we choose an open set U0 with

K ⊆ U0 ⊆ U0 ⊆ U1 = X ................L.

Similarly, we find an open set U 1
2

with

K ⊆ U0 ⊆ U0 ⊆ U 1
2
⊆ U 1

2
⊆ U1 = X ................L.

Next, we find open sets U 1
4
, U 3

4
such that

K ⊆ U0 ⊆ U0 ⊆ U 1
4
⊆ U 1

4
⊆ U 1

2
⊆ U 1

2
⊆ U 3

4
⊆ U 3

4
⊆ U1 = X ................L.

Continuing in this way, we find a family of open sets Ur indexed by the dyadic rationals

r ∈ [0, 1] (i.e. all rationals in [0, 1] whose denominator is a power of 2) such that

K ⊆ U0 ⊆ Ur ⊆ Ur ⊆ Us ⊆ U1 = X ................L

whenever r < s where r, s ∈ R := {dyadic rationals in [0, 1]}. Now define f : X → [0, 1] by

f(x) = inf{r ∈ R : x ∈ Ur}.

4



Clearly f(x) = 0 for all x ∈ K, and f(x) = 1 for all x ∈ L. To see that f is continuous,

let I denote the set of all irrationals in (0, 1), and note that the sets of the form

[0, a), (a, 1] where a ∈ I

form a subbasis for the open sets of [0, 1]. Now for x ∈ X and a ∈ I we have

f(x) < a iff x ∈ Ur for some r ∈ R ∩ [0, a)

so f−1([0, a)) =
⋃
{Ur : r ∈ R ∩ [0, a)} which is open in X; also

f(x) > a iff x /∈ Ur for some r ∈ R ∩ (a, 1]

iff x /∈ Us for some s ∈ R ∩ (a, 1]

(take r ∈ R∩ (f(x), a) and s ∈ R∩ (a, r)) so that f−1((a, 1]) =
⋃
{X ................Us : s ∈ R∩ (a, 1]}

which is open in X. Thus f is continuous.

3.2 Corollary. Every normal Hausdorff space is completely regular.

Urysohn’s Lemma has the following generalization:

3.3 Theorem (Tietze-Urysohn Extension Theorem). Suppose X is a normal

space, and let K ⊆ X be a closed subset. Then every continuous function f : K → R
extends to a continuous function X → R. Moreover if f is bounded, then it has a

bounded continuous extension to X.

Note that in the hypotheses of Urysohn’s Lemma, if we define f : K t L → [0, 1] having

values 0 and 1 on K and on L respectively, then f is continuous; so the extension provided

by Theorem 3.3 gives another proof of Urysohn’s Lemma. However, we omit the proof of

Theorem 3.3.

4. Subspaces of Cubes

Tychonoff characterized the subspaces of cubes [0, 1]A (arbitrary products of the unit

interval) as precisely the completely regular Hausdorff spaces:

4.1 Theorem (Tychonoff). Let X be a topological space. Then X is embeddable

in [0, 1]A for some set A, iff X is completely regular and Hausdorff.

Proof. Since [0, 1]A is compact Hausdorff, it is normal and hence completely regular; thus

every subspace of [0, 1]A is completely regular and Hausdorff.
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Conversely, suppose X is completely regular. Denote by F the set of all continuous

functions X → [0, 1]. We will embed X in [0, 1]F =
∏
f∈F [0, 1]f where [0, 1]f ' [0, 1] for

all f . For this we define the map

ι : X → [0, 1]F , x 7→
(
f(x)

)
f∈F ∈ [0, 1]F ;

thus the f -coordinate of ι(x) is f(x). To see that ι is injective, note that for distinct

points x, y ∈ F , by complete regularity there exists f : X → [0, 1] such that f(x) = 0 and

f(y) = 1; and ι(x) 6= ι(y) since these two points have f -coordinate 0 and 1 respectively.

Consider a subbasic open set in [0, 1]F of the form

π−1g (V ) =
{
v=(vf )f ∈ [0, 1]F : vg ∈ V

}
where g ∈ F and V ⊆ [0, 1] is open; then

ι−1(π−1g (V )) =
{
x ∈ X : g(x) ∈ V

}
= g−1(V ),

which is open in X. This shows that ι : X → [0, 1]F is continuous.

Let U ⊆ X be an open neighbourhood of x, so that ι(x) ∈ ι(U). Since X is completely

regular, there exists a continuous function g : X → [0, 1] such that g(x) = 0 and g(y) = 1

for all y /∈ U . Now

V = π−1g (
[
0, 12
)
) =

{
(vf )f ∈ [0, 1]F : vg <

1
2

}
is a (subbasic) open neighbourhood of ι(x) in [0, 1]F , and so V ∩ ι(X) ⊆ ι(U) is an open

neighbourhood of ι(x) in the subspace topology for ι(X). This completes our proof that

the restriction ι : X → ι(X) is a homeomorphism.

We remark that the closed subspace ι(X) ⊆ [0, 1]F in Theorem 4.1 is a compact

Hausdorff space in which X is embedded. This is in fact the most general (universal)

embedding of X in a compact Hausdorff space—it is the Stone-Čech compactification

of X, which we will soon investigate.
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