
Representation Theory
handout for Math 5530: Topics in Finite Groups

version of December 2, 1992 Eric Moorhouse

1. Representations and Characters
Let V be an n-dimensional vector space over a field F . (All vector spaces considered will
be finite dimensional.) A (linear) representation of a group G is a homomorphism
π : G → GL(V ). Often we will take V = Fn, written as column vectors over a field F , so
we may consider a representation to be a homomorphism G→ GL(n, F ).

We must first distinguish between modular representations (those for which F

has nonzero prime characteristic) and ordinary representations (those in characteristic
zero). Our focus will be on ordinary representation theory, which is easier and has broader
applications. In this case we will usually take F = C, which has the additional nice
property of being algebraically closed. Often it is advantageous to instead take F to be a
finite extension of Q, but we will try to avoid the technicalities involved in this choice.

The degree of the representation π is n, the dimension of the vector space V . The
representation π is reducible if there exists a nonzero proper subspaceW (i.e. 0 < W < V )
which is invariant under all π(g), g ∈ G; otherwise V is irreducible. A representation of
degree one is called linear. Clearly any linear representation is irreducible, and is nothing
other than a homomorphism G → F×, where F× is the multiplicative group of nonzero
field elements. An important special case is the trivial representation π1(g) =

(
1
)

of degree 1. We say that the representation π is faithful if kerπ = 1, or equivalently,
π(G) ∼= G.

To each representation π : G→ GL(V ) we associate its character χ : G→ F defined
by χ(g) = trπ(g), and we say that π affords χ. Note that χ(h−1gh) = trπ(h−1gh) =
tr

(
π(h)−1π(g)π(h)

)
= tr π(g) = χ(g), so χ is a class function defined on G, i.e. its

value is constant on conjugacy classes. Since π(1) is an n × n identity matrix, we have
χ(1) = tr I = n, which is the degree of π, also called the degree of χ. Again, characters of
degree one are called linear. It is easy to see that every linear character is a homomorphism,
but that in general, nonlinear characters are not homomorphisms.

Two representations π : G → GL(V ) and σ : G → GL(W ) are equivalent if there
exists a fixed F -isomorphism (i.e. isomorphism of vector spaces over F ) T : V → W such
that T ◦ π(g) = σ(g) ◦ T for all g ∈ G. In this case we write π ∼ σ. Note that this does
indeed define an equivalence relation on the set of all representations of G over a field F .
In matrix terminology, two representations π, σ : G→ GL(n, F ) are equivalent if there is a
change of basis sugh that for all g ∈ G, there is a linear transformation represented by π(g)
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with respect to the first basis, and by σ(g) with respect to the second basis. Equivalent
representations afford the same character. To see this, let π ∼ σ via T as above; then

trπ(g) = tr
(
T−1σ(g)T

)
= trσ(g).

The converse, which is not obvious, will be proven later: if two ordinary representations
afford the same character, then they are equivalent.

Let k be the number of conjugacy classes of G, and let g1=1, g2, . . . , gk be repre-
sentatives of the distinct conjugacy classes. Recall that the conjugacy class containing gi
has size |gGi | = [G : CG(gi)]. The set of all class functions G → C is a vector space of
dimension k. We define an inner product on this space by

[θ, η] =
1
|G|

∑
g∈G

θ(g)η(g) =
1
|G|

k∑
i=1

|gGi |θ(gi)η(gi) =
k∑
i=1

1
|CG(gi)|θ(gi)η(gi) .

It will be shown that there are exactly k inequivalent irreducible representations π1, . . . , πk
over F = C, and that the corresponding characters χ1, . . . , χk form an orthonormal basis
for the space of all class functions on G.

Given two representations of G, say π : G → GL(V ) and σ : G → GL(W ), we may
form their direct sum π⊕σ : G → GL(V⊕W ). If we identify each linear transformation
with its matrix, then

(π⊕σ)(g) = π(g) ⊕ σ(g) =
(
π(g) 0

0 σ(g)

)
.

The representation ρ is completely reducible if we may decompose ρ = ρ1⊕ρ2⊕· · ·⊕ρm
where each ρi is irreducible; that is to say, V = V1⊕V2⊕· · ·⊕Vm where each subspace Vi ≤
V is invariant under ρ(g) for all g ∈ G, and moreover each of the restricted representations
ρi : G→ GL(Vi), g �→ π(g)

∣∣
Vi

is irreducible.
Not every representation is completely reducible. For example, let G be the additive

group of a field F = GF (p), and consider the representation π : G → GL(2, F ) defined
by π(a) =

(
1
0
a
1

)
. Then V = F 2 is reducible but not completely reducible, since

〈(
1
0

)〉
is the unique nonzero proper invariant subspace, which therefore has no complementary
invariant subspace. In the next section we will see that such anomalies cannot arise with
ordinary representations: every representation π : G → GL(n,C) is completely reducible,
as a direct sum of [χ, χi] copies of πi where {πi} are the irreducible complex representations
of G, {χi} are the corresponding characters, and χ is the character of π.

1.1 Example. Let G = S3. We will see later that G has exactly three (up to equivalence)
irreducible representations over F = C, of degree 1, 1, 2 respectively. These may be
denoted

π1(g) =
(
1
)

for all g ∈ G (the trivial representation);
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π2(g) =
(
sgn(g)

)
=

{ (
1
)
, g an even permutation,(−1
)
, g odd;

π3(g) is determined by π3

(
(12)

)
=

(
0
1

1
0

)
, π3

(
(123)

)
=

(
ω
0

0
ω

)
where ω ∈ C is a

primitive cube root of 1.
The values of the corresponding characters are conveniently expressed by the character
table

(1) (12) (123)

χ1 1 1 1
χ2 1 −1 1
χ3 2 0 −1

The reader should check that {χ1, χ2, χ3} is an orthonormal basis for the space of class
functions on G. Now consider, for example, the matrix representation ρ : G → GL(3,C)
determined by

ρ
(
(12)

)
=

(0
1
0

1
0
0

0
0
1

)
, ρ

(
(123)

)
=

( 0
0
1

1
0
0

0
1
0

)
.

The corresponding character satisfies χ(1) = 3, χ
(
(12)

)
= 1, χ

(
(123)

)
= 0. One computes

[χ, χi] = 1, 0, 1 for i = 1, 2, 3 respectively. Thus ρ ∼ π1 ⊕π3. It is possible to decompose

ρ directly with a little geometric insight: G permutes the vertices
( 1

0
0

)
,

( 0
1
0

)
,
( 0

0
1

)
of an

equilateral triangle in the plane x + y + z = 1, and G fixes the normal vector v1 =
(1

1
1

)
to this plane. Choose a new basis for C3 by taking v1 together with a basis for v⊥1 ; say,

v2 =
( 1
−1
0

)
, v3 =

( 1
0
−1

)
. We have V = 〈v1〉 ⊕ 〈v2, v3〉 in which both 〈v1〉 and 〈v2, v3〉 are

invariant under ρ(G). Relative to the new basis {v1, v2, v3}, the new matrix representation
ρ′ : G→ GL(3,C) is determined by

ρ′
(
(12)

)
=

(
ρ′1

(
(12)

)
0

0 ρ′2
(
(12)

))
=

⎛
⎝ 1

−1 −1
0 1

⎞
⎠ ,

ρ′
(
(123)

)
=

(
ρ′1

(
(123)

)
0

0 ρ′2
(
(123)

) )
=

⎛
⎝ 1

0 1
−1 −1

⎞
⎠ .

These matrices were found by taking images of the basis vectors; for example ρ
(
(123)

)
v3 =

v2 − v3, which gives
( 0

1
−1

)
as the third column of ρ′

(
(123)

)
. Evidently ρ′2 ∼ π3; and with

a little fussing we find that π3(g) =
(
ω
1
ω
1

)−1
ρ′2(g)

(
ω
1
ω
1

)
for all g ∈ G.
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2. Modules
The language of modules may be considered equivalent to the language of representations.
We introduce both sets of terminology since each choice of language has its merits.

Let R be a ring with identity 1 ∈ R. A (left) R-module is an additive abelian group
M together with a definition of scalar multiplication rv ∈M for r ∈ R, v ∈M such that

(i) r(v +w) = rv + rw,
(ii) (r+ s)v = rv + sv,
(iii) r(sv) = (rs)v,
(iv) 1v = v

for all r, s ∈ R, v,w ∈M . (In case R is a field, a left R-module is the same thing as a left
vector space over R.)

Recall that a vector space A over a field F which is at the same time a ring, is
called an algebra over F , assuming some compatibility between the vector space and ring
structures, namely λ(xy) = x(λy) = (λx)y for all λ ∈ F , x, y ∈ A; also 1

F
x = x where 1

F
is

the multiplicative identity in F . If A is an F -algebra, then any A-module is in particular
a vector space over F , and as such we can speak of its dimension over F . We will be
primarily interested in the case of the group ring R = FG =

{∑
g∈G agg : ag ∈ F

}
,

which is also an algebra, called the group algebra of G over F . Given a representation
π : G → GL(V ), we make V into an FG-module by defining scalar multiplication as(∑

g∈G agg
)
v =

∑
g∈G agπ(g)v ∈ V ; one easily checks that properties (i)–(iv) follow. Note

however that this FG-module depends not only on F , G and V , but also on the choice of
representation π.

The trivial FG-module is a one-dimensional module F which carries the trivial rep-
resentation of FG. This is nothing other than F itself, where for

∑
g∈G agg ∈ FG and

v ∈ F , we have
(∑

g∈G agg
)
v =

(∑
g∈G ag

)
v ∈ F .

A nonzero R-module M is simple if it has no nonzero proper submodules. Thus an
FG-module is simple if and only if the corresponding representation of G is irreducible.

An R-module is semisimple if it is a direct sum of simple R-submodules. Thus an
FG-module is semisimple if and only if the corresponding representation is completely
reducible. The following is a useful criterion for semisimplicity.

2.1 Lemma. An R-module V is semisimple if and only if for every submodule U ≤ V

there exists a (complementary) submodule U ′ such that V = U ⊕ U ′.

Proof. Suppose that V = V1 ⊕V2 ⊕ · · · ⊕Vm as a direct sum of simple R-submodules,
and let U ≤ V be any submodule. Define U ′ to be maximal among all submodules of V
which intersect U in 0. (The class C =

{
submodules W ≤V : W ∩ U = 0

}
contains the

zero submodule and so C is nonempty. Since V is finite dimensional, C has a maximal
member.) We must show that the submodule U +U ′ = V . Suppose not. Then there exists
some i such that Vi �⊆ U +U ′. Then Vi ∩ (U +U ′) is a proper R-submodule of Vi, and
since Vi is simple, we have Vi ∩ (U +U ′) = 0. Thus (U ′ +Vi) ∩ U = 0, and U ′ +Vi is an
R-module properly containing U ′, a contradiction.
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The converse follows easily by induction on dimV .

Let V and W be two FG-modules. Then HomF (V,W ) denotes the set of all F -linear
transformations V → W . But HomR(V,W ) denotes the set of all maps T : V → W such
that T (v+ v′) = T (v) + T (v′) and T (rv) = rT (v) for all v, v′ ∈ V and r ∈ R. Thus
T ∈ HomR(V,W ) if and only if

(i) T ∈ HomF (V,W ), and
(ii) T is G-equivariant, i.e. T

(
π(g)v

)
= σ(g)T (v) for all g ∈ G, v ∈ V , which is to say

that T ‘commutes’ with G in its respective actions. Here π : G → GL(V ) and
σ : G→ GL(W ) are the respective actions.

Also let EndR(V ) = HomR(V, V ), the ring of all R-endomorphisms of V . In case R is an
F -algebra, note that HomR(V,W ) is a vector space over F and EndR(V ) is an F -algebra.
Note that EndF (V ) ∼= M(n, F ) where n = dimV , and EndR(V ) = CM(n,F )

(
π(G)

)
={

h∈M(n, F ) : hπ(g)=π(g)h for all g∈G}
, the centralizer of π(G) in M(n, F ).

We provide here a glossary of terminology for representations of G, together with
equivalent terminology for FG-modules.

Representation-theoretic terminology Module terminology

vector space over F FG-module
with representation of G

invariant subspace submodule

irreducible representation simple module

completely reducible semisimple

equivalent representations isomorphic modules

G-equivariant module homomorphism
linear transformation

trivial representation g �→ (
1
)

trivial FG-module F

TABLE 2.2: Glossary

The following says that if the characteristic of F is zero or a prime not dividing |G|,
then every representation of G over F is completely reducible.

2.3 Maschke’s Theorem. If |G| is not divisible by the characteristic of F , then every

FG-module is semisimple.

Proof. Let π : G→ GL(V ) be a representation where V = Fn, and let U be a subspace of
V invariant under π(G). By Lemma 2.1, it suffices to find an invariant subspace U ′ such
that V = U ⊕ U ′.
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Certainly we can find a subspace W such that V = U ⊕ W . The problem is that
in general, this W is not invariant under π(G). Let P : V → U be the projection of V
onto U along W , i.e. every vector v ∈ V is expressible uniquely as Pv + (v−Pv) with
Pv ∈ U , (v−Pv) ∈ W , and this property uniquely determines P ∈ HomF (V,U). Define
T : V → U by

Tv =
1
|G|

∑
h∈G

π(h−1)Pπ(h)v .

Note that |G| is invertible as a field element, according to the hypothesis, so our definition
of T makes sense, and it is clear that T ∈ HomF (V,U). We must check that moreover
T ∈ HomR(V,U) where R = FG. To see this, let g ∈ G and v ∈ V ; then

T
(
π(g)v

)
=

1
|G|

∑
h∈G

π(h−1)Pπ(hg)v =
1
|G|

∑
u∈G

π(gu−1)Pπ(u)v = π(g)T (v).

It is likewise easy to check that T 2 = T and that T
∣∣
U

is the identity on U . Let U ′ =
{v−T (v) : v ∈V }, so that T

∣∣
U ′ = 0 and U ∩ U ′ = 0. Every vector v ∈ V is expressible as

T (v) +
(
u−T (v)

) ∈ U + U ′, so V = U ⊕ U ′. Moreover U ′ is an FG-submodule since it is
the kernel of the FG-homomorphism T .

For any ring R with identity, an important special R-module is R itself, called the
regular R-module. Note that the submodules of this module are the left ideals of R, and
the simple submodules are the minimal left ideals. We say that the ring R is semisimple
if the regular module is semisimple, i.e. if R = I1 ⊕ I2 ⊕ · · · ⊕ Im as a direct sum of
minimal left ideals. By Maschke’s Theorem, this is true of a group ring R = FG whenever
char(F ) � ∣∣ |G|. We shall see that decomposing an arbitrary R-module, depends on being
able to decompose the regular R-module.

2.4 Corollary. Suppose R is semisimple. Then every simple R-module is isomorphic to

some minimal left ideal I ⊆ R.

Proof. Let V be a simple R-module, and choose a nonzero v0 ∈ V . Define φ : R → V

be φ(r) = rv0. Clearly φ is an R-module homomorphism; that is, φ ∈ HomR(R,V ).
The image of φ is φ(R) = Rv0, a nonzero submodule of V containing v0. Since V is
simple, we have φ(R) = Rv0 = V . The kernel of φ is kerφ =

{
r ∈R : rv0 =0

}
, a left

ideal of R. Since R is semisimple, it has a left ideal J such that R = J ⊕ kerφ. Thus
J ∼= R/ ker φ ∼= φ(R) = V as R-modules. Since V is simple, the left ideal J ⊆ R is
minimal.

The following shows that if |G| is not divisible by charF , then G has only finitely
many irreducible representations over F (up to equivalence).
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2.5 Corollary. Suppose that R is semisimple, and choose a decomposition R = I1 ⊕ I2 ⊕
· · · ⊕ Im where each Ii is a minimal left ideal of R. Then every simple R-module is

isomorphic to Ii for some i, 1≤ i≤m. In particular, R has only finitely many simple

modules (up to isomorphism).

Proof. Let M be a simple R-module. By Corollary 2.4, we may assume that M is a
minimal left ideal of R. Since R is semisimple, it has a left ideal J such that R = M ⊕ J .
Now J is a proper ideal, so there exists i such that Ii �⊆ J . Then Ii ∩ J is a proper
R-submodule of Ii, and since Ii is simple, we have Ii ∩ J = 0. Now

Ii ∼= Ii
/
(Ii ∩ J) ∼= (Ii +J)

/
J ≤ R/J ∼= M.

Since M is simple, we in fact have M ∼= Ii.

3. Schur’s Lemma
A number of related results, beginning with the following, are collectively known as Schur’s
Lemma. First, suppose that π : G→ GL(n, F ) and σ : G→ GL(m,F ) are two irreducible
representations. Our first result, Lemma 3.1, says that if T is an m × n matrix over F
such that Tπ(g) = σ(g)T for all g ∈ G, then either T = 0 or T is square invertible and
π ∼ σ. We have phrased the statement and proof more concisely, however, using module
terminology.

Recall that a ring A with identity 1 such that the nonzero elements are invertible, is
called a division ring or skewfield. A field is the same thing as a commutative division
ring.

3.1 Lemma. Let M and N be simple R-modules. If M and N are not isomorphic, then

HomR(M,N) = 0. If M and N are isomorphic, then HomR(M,N) ∼= HomR(M,M) =
EndR(M) is a division ring.

Proof. Suppose that φ : M → N is a homomorphism of simple R-modules. Then kerφ ≤
M and φ(M) ≤ N are R-submodules. Since M and N are simple, either

(i) kerφ = M , φ(M) ∼= M/ kerφ ∼= M/M = 0, so φ = 0, or
(ii) kerφ = 0, φ(M) ∼= M/0 ∼= M and φ is an R-isomorphism.

Clearly EndR(M) is a ring with identity. If φ is a nonzero R-endomorphism of M , then
the above shows that φ : M →M is an isomorphism; in this case there is an inverse map
φ−1 : M →M , and it is easy to see that φ−1 ∈ EndR(M).

The following corollary says that if π : G→ GL(n,C) is irreducible, and T is any n×n
complex matrix commuting with all matrices π(G), then T = λI for some λ ∈ C. In other
words, the centralizer of π(G) in M(n,C) consists of scalar multiples of the identity. This
is true more generally for representations over any algebraically closed field, regardless of
the characteristic.
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3.2 Corollary. Let F be an algebraically closed field, G a finite group, R = FG the group
algebra, and M a finite dimensional simple R-module. Then EndR(M) = {λI : λ ∈ F} ∼=
F .

Proof of Corollary 3.2. Let φ : M → M be an R-module homomorphism. Then in
particular φ is an F -linear transformation. Since F is algebraically closed, we may choose
λ ∈ F to be a root of the characteristic polynomial of φ, and there exists a nonzero v ∈M

such that φ(v) = λv. Define U = ker(φ− λI), the eigenspace with eigenvalue λ. Then for
any u ∈ U and r ∈ R, we have φ(ru) = rφ(u) = rλu = λ(ru), so U is an R-submodule
of M . Since U �= 0 and M is simple, we have U = M , which says that φ(u) = λu for all
u ∈M .

To see why the hypothesis on F was necessary, observe that there is a representation of
G = {1, g, g2, g3} ∼= C4 of degree 2 determined by π(g) =

(
0
1
−1
0

)
. If we take F = R

then π is irreducible and the centralizer of π(G) in M(2,R) is
{(

a
b
−b
a

)
: a, b ∈ R

}
, which

consists of more than just scalar multiples of
(

1
0

0
1

)
. If instead we take F = C, then π is not

irreducible; we have C2 =
〈(

1
i

)〉⊕ 〈(
1
−i

)〉
as a direct sum of one-dimensional submodules.

4. The Regular Module
Let R be a semisimple ring (for example a group ring FG such that char(F ) � ∣∣ |G|). Our
aim is to be able to decompose every R-modules as a direct sum of irreducibles. We will
accomplish this by decomposing, in particular, the regular R-module R. We begin with
two examples.

4.1 Example. We continue with the notation of Example 1.1 for G = S3. The group ring
R = CG is six-dimensional. We know R is semisimple by Maschke’s Theorem, but here
we provide an explicit decomposition of R into minimal left ideals. Consider the following
elements of R:

v1 =
∑

g∈G g = (1)+ (123)+ (132)+ (12)+ (23)+ (13),
v2 = (1)+ (123)+ (132)− (12)− (23)− (13),
v3 = (12)+ω(13)+ω(23),
v4 = (1)+ω(123)+ω(132),
v5 = (1)+ω(123)+ω(132),
v6 = (12)+ω(13)+ω(23).

Then R = 〈v1〉 ⊕ 〈v2〉 ⊕ 〈v3, v4〉 ⊕ 〈v5, v6〉 where each of the four summands is a minimal
left ideal of R. The representation of G on each of these ideals is given by π1, π2, π3 and
π3 respectively. Thus the irreducible representations occur with multiplicities 1, 1 and 2.

4.2 Example. Let R = M(n, F ), the ring of all n× n matrices over an arbitrary field F .
For 1≤ i≤n, let

Ii =

⎛
⎜⎜⎝

0 · · · ∗ · · · 0
0 · · · ∗ · · · 0
...

...
...

0 · · · ∗ · · · 0

⎞
⎟⎟⎠ ,
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the set of all matrices in R with arbitrary entries in the i-th column and zeroes elsewhere.
Then R = I1 ⊕ I2 ⊕ · · · ⊕ In where each Ii is a minimal left ideal. Thus R is semisimple.

Our goal is to express every group ring CG as a direct sum of simple ideals isomorphic
to M(ni,C). An example of this, using the notation of Example 4.1 for G = S3, is

CG = 〈v1〉 ⊕ 〈v2〉 ⊕ 〈v3, v4, v5, v6〉 ∼= M(1,C) ⊕M(1,C) ⊕M(2,C).

In this case 〈v3, v4, v5, v6〉 = 〈v3, v4〉 ⊕ 〈v5, v6〉 as a direct sum of minimal left ideals.
There are lots of additional submodules of R isomorphic to 〈v3, v4〉, all of the form
〈αv3+βv5, αv4+βv6〉 for constants α, β ∈ C, all of which are submodules of 〈v3, v4, v5, v6〉.
Therefore we may obtain 〈v3, v4, v5, v6〉 as the (not direct!) sum of all ideals of R which
are isomorphic (as R-modules) to 〈v3, v4〉.

Let us express this idea more generally. Let R be a semisimple ring, and let M1,M2,

. . . ,Mk be the distinct irreducible R-modules. (We saw in Corollary 2.5 that there are
only finitely many irreducible R-modules up to isomorphism.) Let Mi(R) be the sum
(not direct!) of all minimal left ideals of R isomorphic to Mi (as R-modules), called the
Mi-homogeneous part of R.

Returning to Example 4.2 with R = M(n, F ), we have V =Fn, which is a simple
R-module under the usual matrix action. Note that every Ii ∼= V as R-modules. It
follows from Corollary 2.5 that V is the unique simple R-module (up to isomorphism).
In this case R has only one V -homogeneous part, V (R) = I1+I2+ · · ·+In +

(
other such

submodules
)

= R. Here again we get our wish: the V -homogeneous part is R = M(n, F ),
a full matrix algebra.

Before we prove our desired decomposition theorem, we observe the following easy
result.

4.3 Lemma. The ring EndR(R) is anti-isomorphic to R.

Proof. For each a ∈ R, let ρa : R→ R denote right-multiplication by a; that is, for x ∈ R

we have ρa(x) = xa ∈ R. Now ρa ∈ EndR(R), since for r, s, x, y ∈ R we have ρa(rx+ sy) =
(rx+ sy)a = r(xa)+s(ya) = rρa(x)+sρa(y). The map ρ : R→ EndR(R) given by a→ ρa

is one-to-one since if ρa = ρb, then ρa(1) = ρb(1) yields a = b. Also ρ is surjective, since
if ψ ∈ EndR(R), we may let a = ψ(1); then ψ(x) = ψ(x1) = xψ(1) = xa = ρa(x) for all
x ∈ R so that ρa = ψ. Also ρ is an anti-isomorphism since ρab(x) = xab = ρb(ρa(x)).

A number of results are collectively known as Wedderburn’s Theorem. The spirit of
these is that every semisimple algebra is a direct sum of simple algebras, each of which is
a full matrix algebra over a division ring extending the original field. Parts (i) and (ii) of
the following are part of Wedderburn’s Theorem.
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4.4 Theorem. Let M1,M2, . . . ,Mk be the distinct irreducible R-modules (up to isomor-

phism) for the group ring R = CG.

(i) Each homogeneous partMi(R) is a simple ideal of R. We have a ring isomorphism

Mi(R) ∼= M(ni,C) where ni is the number of minimal left ideals (each isomorphic

to Mi) in a direct sum decomposition of Mi(R). Also ni = dimMi.

(ii) R = M1(R)⊕M2(R) ⊕ · · · ⊕Mk(R) ∼= M(n1,C) ⊕M(n2,C)⊕ · · · ⊕M(nk,C) as

rings. In particular, |G| = n2
1 + n2

2 + · · · + n2
k.

(iii) The number k equals the number of conjugacy classes of G.

Proof. Decompose R = I1⊕I2⊕· · ·⊕Im as a direct sum of minimal left ideals. With respect
to this decomposition, every R-endomorphism ϕ of R has a unique matrix representation

⎛
⎜⎝
ϕ11 · · · ϕ1m
...

. . .
...

ϕm1 · · · ϕmm

⎞
⎟⎠

where ϕij ∈ HomR(Ii, Ij). (This means that for x ∈ R, we express x =
∑

j xj uniquely
where xj ∈ Ij , and then φ(x) =

∑
i

(∑
j ϕij(xj)

)
where

∑
j ϕij(xj) is the component of

ϕ(x) in Ii.)
Recall from Lemma 3.1 and Corollary 3.2 that HomR(Ii, Ij) = 0 if Ii �∼= Ij as R-

modules; otherwise HomR(Ii, Ij) ∼= C. We may assume that M1(R) = I1 ⊕ · · · ⊕ In1,
M2(R) = In1+1⊕· · ·⊕In1+n2, . . . , Mk(R) = Im−nk+1⊕· · ·⊕Im. It follows that EndR(R) ∼=
M(n1,C)⊕M(n2,C)⊕ · · ·⊕M(nk,C). The previous Lemma gives an anti-automorphism
from R→ EndR(R); also the transpose map gives an anti-automorphismM(n1,C)⊕· · · ⊕
M(nk ,C) → M(n1 ,C) ⊕ · · · ⊕M(nk ,C). Composing maps in the right order gives an
isomorphism R → M(n1,C) ⊕ · · · ⊕M(nk,C). This isomorphism takes Mi(R) to the i-
th summand M(ni,C), which is clearly a simple ideal of R (cf. Example 4.2). Also the
minimal left ideals of M(n1,C)⊕· · ·⊕M(nk,C) contained in M(ni,C) are ni-dimensional,
so dim Ij = ni for every summand Ij ∼= Mi. Comparing dimensions gives |G| = n2

1 + n2
2 +

· · · + n2
k. This proves (i) and (ii).

To prove (iii), first note that each M(ni,C) has a one-dimensional center consisting
of scalar transformations; therefore Z

(
M(n1 ,C)⊕ · · ·⊕M(nkC)

)
is k-dimensional, a direct

sum of scalar transformations in the k summands. But
∑
g∈G agg ∈ Z(R) if and only if

the coefficients ag are constant on conjugacy classes of G; this is obvious from comparing
coefficients of g ∈ G in

∑
g∈G agg = h

(∑
g∈G agg

)
h−1 =

∑
g∈G ah−1ghg for h ∈ G. Thus

if K1,K2, . . . ,K� are the conjugacy classes of G, then the elements
∑

g∈Ki
g for 1≤ i≤ �

form a basis of Z(R) and we must have � = k.
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5. Orthogonality Relations
Let K1, K2, . . . , Kk be the conjugacy classes of G. We have seen that G has exactly k

inequivalent complex representations π1, π2, . . . , πk. Let χ1, χ2, . . . , χk be the corre-
sponding characters, called the irreducible characters of G. Our goal in this section is
to prove that IrrG

def= {χ1, . . . , χk} is an orthonormal basis for the space of class functions
on G. First, we prove a lemma. Note: All representations and characters in this section
are over the field C.

5.1 Lemma. Let χ be any character of G. Then χ(g−1) = χ(g) for all g ∈ G.

Proof. Let n= |G|, so that gn=1. If π is a representation of G of degree r which affords
χ, then π(g)n = π(gn) = I. Therefore every eigenvalue of π(g) is an n-th root of unity.
Let λ1, λ2, . . . , λr be the (not necessarily distinct) eigenvalues of π(g). Then χ(g−1) =∑

i λ
−1
i =

∑
i λi = χ(g).

5.2 Lemma. Let π : G → GL(r,C) and σ : G → GL(s,C) be inequivalent irreducible

matrix rerpesentations of G. Let πij(g) be the (i, j)-entry of π(g) (1 ≤ i, j ≤ r), and

similarly for σ. For all i, j, k, � we have

(i)
∑
g∈G

πij(g)σk�(g−1) = 0, and

(ii)
∑
g∈G

πij(g)πk�(g−1) =
|G|
r
δi�δjk.

Proof. (i) Let V = Cr andW = Cs be the modules on whichG acts via π and σ respectively.
Let T be the s× r matrix whose (j, k)-entry is 1, and all other entries are zero. We define
a linear transformation ϕ = ϕ

T
∈ HomC(V,W ) by

ϕ =
∑
g∈G

σ(g)Tπ(g−1).

If h ∈ G then

ϕπ(h) =
∑
g∈G

σ(g)Tπ(g−1h) =
∑
x∈G

σ(hx)Tπ(x−1) = σ(h)ϕ.

That is, ϕ ∈ HomCG(V,W ). By Schur’s Lemma 3.1, we have ϕ = 0. The (i, �)-entry of ϕ
is 0 =

∑
g∈G πij(g)σk�(g

−1).

(ii) As above, we obtain ϕ =
∑

g∈G πij(g)Tπk�(g
−1) ∈ EndCG(V ). By Schur’s Lemma 3.2,

we have ϕ = λjkI. Comparing (i, �)-entries on both sides of the latter equality yields

(5.3)
∑
g∈G

πij(g)πk�(g−1) = λjkδi� .

Interchanging i↔ � and j↔ k in (5.3) gives
∑

g∈G π�k(g)πji(g
−1) = λi�δjk ; however, re-

placing h = g−1 in the latter summation gives an expression identical to (5.3). Therefore
the expression in (5.3) becomes λjkδi� = λi�δjk , which simplifies to λδi�δjk where λ = λii,
independent of i. Substituting this into (5.3) yields
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(5.4)
∑

g∈G πij(g)πk�(g
−1) = λδi�δjk .

In particular, λ =
∑
g∈G πij(g)πji(g

−1). Summing the latter expression over j yields

rλ =
r∑
j=1

(∑
g∈G

πij(g)πji(g−1)
)

=
∑
g∈G

( r∑
j=1

πij(g)πji(g−1)
)
.

But
∑

j πij(g)πji(g
−1) is just the (i, i)-entry of π(g)π(g−1) = I, which is 1. Thus rλ =∑

g∈G 1 = |G|, i.e. λ = |G|/r. Substituting this into (5.4) gives (ii).

Recall that a class function on G is a function G → C which is constant on each
conjugacy class Ki. Such functions form a k-dimensional vector space over C, which is an
inner product space where for any two class functions θ, η we define

[θ, η] =
1
|G|

∑
g∈G

θ(g)η(g) =
1
|G|

k∑
i=1

|Ki| θ(gi)η(gi) =
k∑
i=1

1
|CG(gi)|θ(gi)η(gi)

where gi ∈ Ki are representatives of the conjugacy classes.

5.5 Theorem (Frobenius). IrrG = {χ1, . . . , χk} is an orthonormal basis for the space

of complex-valued class functions on G.

Proof. Let χ and ψ be irreducible characters of G afforded by representations π and σ of
degree r and s respectively. Then in the notation of Lemma 5.2, we have

|G|[χ,ψ] =
∑
g∈G

χ(g)ψ(g) =
∑
g∈G

χ(g)ψ(g−1) =
∑
g∈G

r∑
i=1

s∑
j=1

πiiσjj(g−1)

=
r∑
i=1

s∑
j=1

∑
g∈G

πiiσjj(g−1) = 0 ,

|G|[χ, χ] =
∑
g∈G

χ(g)χ(g) =
∑
g∈G

χ(g)χ(g−1) =
∑
g∈G

r∑
i=1

s∑
j=1

πiiπjj(g−1)

=
r∑
i=1

s∑
j=1

∑
g∈G

πiiπjj(g−1) =
r∑
i=1

s∑
j=1

|G|
r
δijδij = r

|G|
r

= |G| .

Now let π : G → GL(n,C) be any representation, and let χ be its character. By
Maschke’s Theorem, π is equivalent to a direct sum of copies of the irreducible represen-
tations π1, . . . , πk of G, with corresponding multiplicities n1, . . . , nk. By the previous
theorem the multiplicities are determined by ni = [χ, χi]. Consequently, we have
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5.6 Corollary. Any complex representation of a given group G is determined (to within

equivalence) by its character.

If G is a finite group, a character table for G is a k× k matrix with rows indexed by
the irreducible complex characters χi of G, and columns indexed by the conjugacy classes
Kj of G, having (i, j)-entry χi(gj) where gj ∈ Kj . Usually we order our indices such that
χ1 is the trivial character and K1 = {1}; then the first row of the character table consists
of 1’s, and the first column gives the degrees ni = χi(1) of the irreducible representations
of G.

Let M be the k× k character table of G (as above), and let D = diag(d1, d2, . . . , dk)
where di = |CG(gi)|−1/2. Then by Theorem 5.5, the rows of MD form an orthonormal
basis of Ck with respect to the standard inner product, i.e. MD is unitary in the usual
sense, i.e. (MD)(MD)

T
= I. Therefore the columns of MD also form an orthonormal

basis of Ck, which proves the following.

5.7 Corollary. If IrrG = {χ1, . . . , χk}, then
k∑
i=1

χi(gj)χi(gk) = |CG(gj)|δjk .

Before continuing, we show the following, which will be useful later.

5.8 Theorem. The set of characters of G is closed under addition and under multiplica-

tion.

Proof. Let π : G → GL(r,C) and σ : G → GL(s,C) be representations, with associated
characters χ, η. Then π ⊕ σ is a representation of degree r+ s which affords χ+ η, so the
set of characters of G is closed under addition.

Also π⊗σ is a representation of degree rs, where (π⊗σ)(g) = π(g)⊗σ(g). Note that

(π⊗ σ)(gh) = π(gh) ⊗ σ(gh) =
(
π(g) ⊗ σ(g)

)(
π(g) ⊗ σ(g)

)
= (π⊗σ)(g)(π⊗σ)(g),

so π⊗σ : G → GL(rs,C) is a homomorphism. Also tr(π(g)⊗ σ(g)) = (tr π(g))(tr σ(g)) =
χ(g)η(g), which proves that the product of two characters is a character.
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6. Linear Characters
An important special case, historically the first case to be considered, is the case G
is abelian. In this case, G = 〈x1〉× 〈x2〉× · · · × 〈x�〉 ∼= Cm1 ×Cm2 × · · · ×Cm� , m=
|G|=m1m2 · · ·m�. We construct m linear characters of G as follows:

χf

(
xe11 x

e2
2 · · ·xe�

�

)
= exp

(
2πi

�∑
i=1

fiei

mi

)
, f = (f1, . . . , f�), 0≤ fi<mi .

Since the χ
f
’s are distinct linear characters, they correspond to m inequivalent irreducible

characters of degree 1. But G has exactly m conjugacy classes, each class a singleton
Ki = {gi}. So by Theorem 4.4, these are all the irreducible characters of G. Indeed, we
shall see that the abelian property of G is equivalent to the property that every irreducible
character of G is linear. More generally, we wish to find all linear characters of a given
finite group G.

We first recall some notation and terminology. We define the commutator of two
elements x, y ∈ G by

[x, y] = x−1y−1xy ∈ G.

We define the commutator subgroup of two given subgroups H,K ≤ G by

[H,K] =
〈
[h, k] : h∈H, k ∈K〉

.

In particular the derived subgroup of G is G′ = [G,G]. Note that subgroups H and
K commute if and only if [H,K] = 1. Also G is abelian if and only if G′ = 1; in the
opposite extreme case that G′ = G, we say that the group G is perfect. For example
every nonabelian simple group is perfect; and if n≥ 2, then SL(n, F ) is perfect except
when n=2 and q≤ 3.

6.1 Lemma. Let G be a finite group. Then G′ ≤ G, and the quotient group G/G′ is
abelian. Moreover, G′ is the unique smallest normal subgroup of G whose quotient group
is abelian.

Proof. For x, y, g ∈ G, we have [x, y]g = [xg, yg ]. Therefore the set of all commutators
in G is invariant under conjugation, so the commutators form a normal subgroup. For
xG′, yG′ ∈ G/G′, we have (xG′)(yG′) = (yG′)(xG′)[x, y] = (yG′)(xG′) since [x, y] ∈ G′.
Thus G/G′ is abelian.

Conversely, suppose that K ≤G such that G/N is abelian. For all x, y ∈ G, we have

N = [xN, yN ] = (xN)−1(yN)−1(xN)(yN) = (x−1y−1xy)N = [x, y]N,

so [x, y] ∈ N and G′ ≤ N .

Now let G be any finite group, and let γ : G → G/G′ be the canonical projection
x �→ xG′. If χ is any irreducible character of G/G′ then χ is linear, so the composition

G
γ−→ G/G′ χ−→ C×

is a homomorphism, and hence is a linear character of G.
Conversely, suppose η : G→ C× is a linear character. Then η(G) is a finite subgroup of

C×, which is abelian. So G/ker(η) ∼= η(G) is abelian. By Lemma 6.1 we have ker(η) ⊇ G′.
Therefore there exists a homomorphism χ : G/G′ → C× such that η = χ ◦ γ. This proves
the following.
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6.2 Corollary. The number of linear characters of G equals [G : G′]. These linear charac-

ters are just the functions χ◦γ such that χ ∈ IrrG/G′ where γ : G→ G/G′ is the canonical

projection.

6.3 Example. Let G = A4. Then G has four conjugacy classes, with representa-
tives (1), (12)(34), (123) and (124); hence G has 4 irreducible characters. Since G′ =
〈(12)(34), (13)(24)〉 ∼= 22 of index 3, G has exactly three linear characters χ1, χ2, χ3 deter-
mined by the three homomorphismsG/G′ → 〈ω〉 where ω ∈ C is a primitive cube root of 1.
Solving |G| = 12 = 12 +12 +12 +n2

4 gives χ4(1) = n4 = 3. The orthogonality relations
completely determine the character table of G to be the following:

|CG(g)| 12 4 3 3
g (1) (12)(34) (123) (124)

χ1 1 1 1 1
χ2 1 1 ω ω

χ3 1 1 ω ω

χ4 3 −1 0 0

This doesn’t indicate how to find a representation of degree 3 which affords χ4, but this
will come in the next section.

7. Permutation Modules
It is easy to turn any permutation action of a group, into a matrix representation: simply
represent each of the permutations by its corresponding matrix. We may use ideas from
permutation groups to aid in understanding linear representations; and conversely, some
representation theory is very useful in studying permutation groups.

So we begin with a permutation action of a finite group G on a finite set Ω of cardi-
nality n. By definition, such an action is a homomorphism π : G → SymΩ, where Sym Ω
is the group of all bijections Ω → Ω. Often we will simply take Ω = {1, 2, . . . , n}, so that
Sym Ω = Sn. Now choose a field F , and let V be the n-dimensional vector space with basis
Ω. (If using Ω as a basis causes notational confusion, we instead introduce n new symbols
eX for X ∈ Ω, and use these symbols as our basis.) There is a unique extension of π to
a linear representation on V , also denoted π; namely, π : G → GL(V ) is determined by(∑

X∈Ω aXX)π(g) =
∑
X∈Ω aXX

π(g). If no confusion is possible, we write Xg in place of
Xπ(g), and vg in place of vπ(g) for v ∈ V . Note that in this description, linear transfor-
mations act on the right; this is done to conform with notation from permutation groups,
and it causes no significant problems with our linear representation theory, except that
we must now represent a typical vector

∑
X∈Ω aXX ∈ V by a row vector

(
aX : X ∈Ω

)
.

If we identify each permutation π(g) (and the corresponding linear transformation) with
its matrix with respect to the basis Ω, we have π(g) =

(
δXg,Y : X,Y ∈Ω

)
, a permuta-

tion matrix. We consider V as a module for FG, the permutation module. Note that
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n = |Ω| = dimV is the degree of π in either sense: as a permutation representation, or as
a linear representation.

The character χ associated to π is called the permutation character. Note that
χ(g) = trπ(g) =

∑
X∈Ω δXg,X =

∣∣{X ∈Ω : Xg =X}∣∣. In other words, χ(g) is just the
number of points of Ω fixed by g.

An example is the representation ρ : S3 → GL(3,C) of Example 1.1, in which the
associated space V = C3 is the permutation module forG = S3 in its natural representation
of degree 3 on Ω = {1, 2, 3}. In this case the natural basis for V is {eX : X ∈Ω} =
{e1, e2, e3}, the standard basis for C3.

In the following, we denote the principal character by χ1 =1 as usual.

7.1 Proposition. The number of orbits of G on Ω is [χ, χ1].

Proof. Note that [χ, χ1] = 1
|G|

∑
g∈G χ(g) is the average number of fixed points of the

permutations π(G).
Consider first the case that G acts transitively on Ω. Let S = {(X, g) : X ∈Ω, g∈G,

Xg =X}. We count |S| in two different ways. For each g ∈G, the number of pairs (X, g)
such that Xg =X is χ(g), so |S| =

∑
g∈G χ(g) = |G|[χ, χ1]. On the other hand, for each

point X ∈Ω, the number of pairs (X, g) such that Xg =X, is the order of the stabilizer
GX , so |S| = |Ω||GX | = |G|. This gives [χ, χ1] = 1 as required.

For the general case, let Ω = Ω1 ∪ Ω2 ∪ · · · ∪ Ωw as a disjoint union of orbits for
G. Clearly this gives a decomposition V = 〈Ω〉 = 〈Ω1〉 ⊕ 〈Ω2〉 ⊕ · · · ⊕ 〈Ωw〉 where each
〈Ωi〉 is invariant under π(G). Let πΩi

(g) be the restriction of π(g) to 〈Ωi〉, and let χΩi

be the character afforded by πΩi
. Then π = πΩ1

⊕ · · · ⊕ πΩw
and χ =

∑w
i=1 χΩi

. Since
G acts transitively on each orbit, by the previous case we have [χ

Ωi
, χ1] = 1, and so

[χ, χ1] =
∑w
i=1[χΩi

, χ1] = w, the number of orbits.

It is evident from the latter proof that if G is not transitive on Ω, then the per-
mutation module decomposes as a direct sum of submodules 〈Ωi〉. If we understand the
representations πΩi

, where G acts transitively on each orbit Ωi, then by taking direct sums
we can expect to understand π. So for the rest of this Section we will assume that G acts
transitively on Ω. Also we will take F = C. Please keep in mind Example 1.1 as you read
the following statements.

For a transitive action of G on Ω, Proposition 7.1 shows that the trivial representation
occurs with multiplicity 1 in π. Indeed, it is easy to see that if v1 =

∑
X∈ΩX, represented

by the all-1’s vector, then 〈v1〉 is a one-dimensional submodule of V , and in fact this is the
trivial module bearing the trivial representation π1(g) =

(
1
)
. Over the complex numbers,

π is completely reducible, so V = 〈v1〉 ⊕ U for some (n− 1)-dimensional submodule U . It
is easy to see that U =

{∑
X∈Ω aXX :

∑
aX =0

}
. (The fact that 〈v1〉 ∩ U = 0 follows

from the fact that C has characteristic 0.) This gives a decomposition π ∼ π1 ⊕ π′, where
π′(g) is the restriction of π(g) to U . Let χ′ be the character of degree n− 1 afforded by π′.
Then [χ′, χ1] = [χ, χ1]− [χ1, χ1] = 1− 1 = 0, so the trivial representation does not occur
in π′. Is π′ irreducible? The answer is provided by the following.
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7.2 Theorem. Suppose that G acts transitively on Ω, and let χ be the permutation

character. Then [χ, χ] is the number of orbits of GX , the point stabilizer, on Ω. In

particular, G acts doubly transitively if and only if [χ, χ] = 2, if and only if π′ (as above)

is irreducible.

Proof. Note that G acts on Ω×Ω componentwise via (Y,Z)g = (Y g, Zg). Since G acts
transitively on Ω, the number of point orbits of GX on Ω equals the number of orbits of
G on Ω×Ω. Let V = 〈Ω〉 be the permutation module for the representation π of G, so
that dimV = n = |Ω|. Then the n2-dimensional permutation module for the action of G
on Ω×Ω is V ⊗V ∼= 〈Ω×Ω〉 (cf. Theorem 5.8). To see this, we have an obvious C-linear
transformation ϕ : V ⊗V → 〈Ω×Ω〉 defined by

∑
Y,Z∈Ω aY,ZY ⊗Z �→ ∑

Y,Z∈Ω aY,Z (Y,Z).
Furthermore, ϕ is an isomorphism of CG-modules, since

ϕ
(
(
∑
Y,Z

aY,ZY ⊗Z)g
)

= ϕ
(∑
Y,Z

aY,ZY
g ⊗Zg

)
=

∑
Y,Z

aY,Z (Y g, Zg) =
(∑
Y,Z

aY,Z (Y,Z)
)g
.

By Theorem 5.8, the permutation character for G on Ω×Ω is χ2. Therefore the number
of orbits of GX on Ω, equals the number of orbits of G on Ω×Ω, which by Proposition 7.1
is [χ2, χ1] = 1

|G|
∑

g∈G χ(g)2 = [χ, χ].
Now G acts doubly transitively on Ω if and only if GX has only two orbits {X}

and Ω ................ {X}, which by the above, is equivalent to [χ, χ] = 2. Let k be the number of
conjugacy classes of G, and let π1, π2, . . . , πk be the irreducible complex representations
of G, with IrrG = {χ1, χ2, . . . , χk}. In the preceding notation, we have π = π1 ⊕π′ where
π′ decomposes as a direct sum of irreducibles, in which the irreducible πi occurs with
multiplicity ri, say. Then χ = χ1 +

∑k
i=2 riχi , so [χ, χ] = 1 +

∑k
i=2 r

2
i . The only way to

have [χ, χ] = 2 is if one ri is 1 and the remaining ri’s are zero, which says that π′ ∼ πi is
irreducible.

7.3 Example. Consider G = A4 in its usual representation of degree 4 on Ω = {1, 2, 3, 4}.
This is a doubly transitive action, and the permutation character χ satisfies χ

(
(1)

)
=4,

χ
(
(12)(34)

)
=0, χ

(
(123)

)
=χ

(
(124)

)
=1. One verifies directly that [χ, χ] = 16

12 + 0
4 +

1
3 + 1

3 = 2. It follows that χ′ = χ − χ1 is an irreducible character of degree 3, which
of course is the character χ4 of Example 6.3. But now we have a representation of G
which affords χ4. Starting with the permutation module V = C4 with standard basis
{eX : X ∈Ω} = {e1, e2, e3, e4}, we have V = 〈v1〉 ⊕ U where v1 = (1, 1, 1, 1) and U =
{(a1, a2, a3, a4) :

∑
ai =0}. Here U is the required three-dimensional CG-module, and if

explicit 3× 3 matrices π4(g) are required, these may be found just as in Example 1.1.

7.4 Example. We compute the character table of G = A5. We know that G has exactly
five conjugacy classes, with representatives (1), (12)(34), (123), (12345) and (12354); the
respective centralizer orders are 60, 4, 3, 5 and 5. Since G is a nonabelian simple group,
G is perfect, so its only linear character is the principal character χ1. Let χ be the
permutation character of G in its usual (doubly transitive) representation on five points.
By Theorem 7.2, χ2

def= χ − χ1 is irreducible of degree 4. We have entered the values
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of χ2 in the table below. Now the degrees of the irreducible characters must satisfy
|G| = 60 = 12 + 42 + n2

3 + n2
4 + n2

5. It is easy to check that the remaining degrees can only
be 3, 3 and 5.

Note that G ∼= PSL(2, 5) acts 2-transitively on the 6 points of the projective line
over GF (5). In this representation, (12)(34) ↔ (

0
1
−1
0

)
fixes two points

〈(
1
2

)〉
and

〈(
1
3

)〉
;

similarly (123) ↔ (
0
1
−1
1

)
fixes zero points, and every element of order 5, conjugate to(

1
0

2
1

)
or to

(
1
0

1
1

)
, fixes exactly one point. By Theorem 7.2, subtracting off χ1 from this

permutation character, gives the irreducible character χ3 of degree 5 with values as shown
here: |CG(g)| 60 4 3 5 5

g (1) (12)(34) (123) (12345) (12354)

χ1 1 1 1 1 1
χ2 4 0 1 −1 −1
χ3 5 1 −1 0 0
χ4 3
χ5 3

It is now possible to complete the character table using the orthogonality relations (Theo-
rems 5.5 and 5.7), and we leave this as an exercise. Instead, we produce the missing three-
dimensional representations and determine the corresponding characters. To do this, we
representG as the group of rotational symmetries of a regular dodecahedron, with vertices
labelled by the 20 ordered pairs (i, j) such that i, j are distinct members of {1, 2, 3, 4, 5}.
This dodecahedron is as pictured:
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This representation of G must be irreducible over C; for otherwise, it would decompose
as a direct sum of three copies of the trivial representation, which would mean that G
acts as the identity of order 3, a contradiction. So we have an irreducible representation
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π4 : G → GL(3,R) ⊂ GL(3,C), and we may suppose that χ4 is its character, one of the
irreducible characters of degree 3.

Now the effect of (12)(34) is a 180◦ rotation about an axis which joins the midpoints
of the edges 14—23 and 41—32. The remaining conjugacy class representatives also act
as rotations about certain axes, through the angles indicated by the following pictures:
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action of (123) action of (12345) action of (12354)

In general, any rotation about an axis through an angle θ may be represented (with respect
to an appropriate basis) by the matrix⎛

⎝ cos θ − sin θ 0
sin θ cos θ 0

0 0 1

⎞
⎠ ,

whose trace is 1 + 2 cos θ. This gives the values of χ4 given in the table below.
Finally, the values of the remaining irreducible character χ5 are determined using

the orthogonality relations. Alternatively, let σ : G → G be an outer automorphism, for
example conjugation by (45). Then g �→ π4(gσ) is also a homomorphism, and hence is an
irreducible representation of degree 3, whose character is χ5.

|CG(g)| 60 4 3 5 5
g (1) (12)(34) (123) (12345) (12354)

χ1 1 1 1 1 1
χ2 4 0 1 −1 −1
χ3 5 1 −1 0 0
χ4 3 −1 0 1−√

5
2

1+
√

5
2

χ5 3 −1 0 1+
√

5
2

1−√
5

2

With the small groups we have looked at so far, we have been fortunate to discover most
of the irreducible characters quickly, and then the remaining irreducible characters, if any,
have been determined using the orthogonality relations. For larger groups we will not
always be so lucky, and other methods must be used to complete the character table. In
the next section, we will learn how to determine characters of a given group using the
character tables of its proper subgroups.
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8. Induced Characters
Given any character ψ of G and any subgroup H ≤ G, the restriction of ψ to H, denoted
ψH , is a character. This much is clear. (Be warned, however, that ψ might be irreducible
without ψH being irreducible.)

Now consider the reverse problem: Given a character χ of H ≤ G, does this ‘lift’ in
any sense to a character of G? Warning: It is not true in general that every character of H
is the restriction of a character of G. Therefore we cannot hope that ‘lift’ means to extend
in the usual sense for functions. Nevertheless, there is a natural way, given χ, to produce
an induced character of G, denoted χG. Moreover, the theory of induced characters is very
important in understanding the subgroup structure of groups. For the present, however,
we are content to motivate this topic by saying that it can be used to help determine the
character table of a group from those of its proper subgroups.

Let χ be a character of H, where H ≤ G. We first extend χ to all of G in the easiest
possible way, by defining

χ̂(g) =
{
χ(g), g ∈ G;
0, otherwise.

Now define the ‘induced character’

χG(g) =
1
|H|

∑
x∈G

χ̂(x−1gx), g ∈ G.

It is not yet clear that this is a character of G, which is why we used quotes ‘ ’ above. In the
next section, we will produce a representation which affords χG, to justify the terminology.
For now, though, let us accept χG as the function defined above, and consider its properties.
First, it is easy to see that χG : G→ C is a class function. For if g, y ∈ G, then

χG(gy) =
1
|H|

∑
x∈G

χ̂(gyx) =
1

|H|
∑
x′∈G

χ̂(gx
′
) = χG(g).

Since χG is a class function on G, it makes sense to write [χG, ψ] for any class function
ψ of G. Now we must be careful: does [ , ] mean inner product of class functions of
G, or inner product of class functions of H? Although the context will usually prevent
ambiguity, we will play it safe by using subscripts to indicate the correct space, thus:

[ψ,ψ′]G =
1
|G|

∑
g∈G

ψ(g)ψ′(g)

for any two class functions ψ,ψ′ of G, and

[θ, θ′ ]H =
1
|H|

∑
h∈H

θ(h)θ′(h)

for any two class functions θ, θ′ of H. Also we denote the principal characters of H and
G by 1H and 1G in order to distinguish them; thus 1H(h)= 1 and 1G(g)= 1 for all h∈H,
g ∈G.

Our first example of induced characters is something we have seen already: permuta-
tion characters!
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8.1 Theorem. Suppose G acts transitively on Ω. Then the permutation character is

(1H)G where H = GX is the stabilizer of any point X ∈ Ω.

Proof. The points of Ω are in one-to-one correspondence with the right cosets Hg, g∈G,
and G acts on these right cosets by right multiplication, giving a transitive permutation
action equivalent to the action on Ω. The premutation character is given by

ψ(g) = number of points of Ω fixed by g

= number of right cosets Hu such that Hug = Hu

=
1
|H|

∣∣{u∈G : Hug=Hu}∣∣
=

1
|H|

∣∣{u∈G : ugu−1∈H}∣∣
=

1
|H|

∑
u∈G

1H(ugu−1)

= (1H)G(g).

8.2 Frobenius Reciprocity Theorem. Let ψ be a character of G, and χ a character of

H ≤ G. Then
[χG, ψ]G = [χ,ψH ]H .

Proof.
[χG, ψ]G =

1
|G|

∑
g∈G

χG(g)ψ(g)

=
1

|G||H|
∑
g∈G

∑
x∈G

χ̂(x−1gx)ψ(g)

=
1

|G||H|
∑
u∈G

∑
x∈G

χ̂(u)ψ(xux−1) ,

substituting u = x−1gx. Now ψ(xux−1) = ψ(u) since ψ is a class function on G. Also
χ̂(u) vanishes unless u∈H, so

[χG, ψ]G =
1

|G||H|
∑
x∈G

∑
u∈H

χ(u)ψ(u)

=
1
|H|

∑
u∈H

χ(u)ψH (u) = [χ,ψH ]H .

As an example of how to apply the previous two results, let G act transitively on Ω, with
point stabilizer H = GX . Then the permutation character is (1H)G, and the multiplicity of
the trivial representation 1G in the permutation character is [(1H)G, 1G]G = [1H , 1H ] = 1,
a fact already known by Proposition 7.1.
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For purposes of computing induced characters, calculations are simplified by choosing
a right transversal T for H in G, which is a set of representatives of the distinct right
cosets of H in G. Thus |T | = [G : H] and G =

⋃
t∈T Ht. Note that in general T is only a

subset, not a subgroup, of G. Then for g ∈G,

χG(g) =
1
|H|

∑
x∈G

χ̂(xgx−1) =
1
|H|

∑
t∈T

∑
h∈H

χ̂(htgt−1h−1) .

But clearly χ̂(huh−1) = χ̂(u) for all u∈G, h∈H. This proves the following.

8.3 Lemma. χG(g) =
∑
t∈T

χ̂(tgt−1) .

8.4 Example. For this example, assume that induced characters are characters. (We still
have yet to prove this.) Let us determine the character table of G = S5. First, G′ = A5, so
G has exactly two linear characters, χ1 and χ2 , corresponding to the two linear characters
of G/G′ ∼= C2. These, of course, are the principal character and the ‘sign’ character
analogous to the situation of Example 1.1. Also, G has two doubly transitive permutation
actions: one of degree 5, acting naturally as S5; and the other as PGL(2, 5), acting on the
6 points of the projective line over GF (5). Using Theorem 7.2, just as in Example 7.4,
this gives irreducible characters χ3 and χ4 of degree 4 and 5 respectively. Details of these
computations are left to the reader, and we have this much of the character table of G so
far: |CG(g)| 120 12 8 6 4 5 6

g (1) (12) (12)(34) (123) (1234) (12345) (123)(45)

χ1 1 1 1 1 1 1 1
χ2 1 −1 1 1 −1 1 −1
χ3 4 2 0 1 0 −1 −1
χ4 5 −1 1 −1 1 0 −1
χ5

χ6

χ7

The degrees of the remaining irreducible characters must satisfy |G| = 120 = 11 + 12 +
42 + 52 + n2

5 + n2
6 + n2

7. There are two possible solutions for the missing degrees: 2,3,8
or 4,5,6. In this instance the orthogonality relations are not adequate to determine the
rest of the table. Instead, we induce characters from the subgroup H = A5. We have a
right transversal T = {(1), (12)}, and so for each character χ of H, we obtain an induced
character χG(g) = χ̂(g)+ χ̂(g(12)) (from Lemma 8.3, instead of the definition, which would
give 120 terms). Let χ be one of the irreducible characters of H of degree 3 (say, χ4 of
Example 7.4). Then we obtain an induced character χG with values

g (1) (12) (12)(34) (123) (1234) (12345) (123)(45)
χG(g) 6 0 −2 0 0 1 0
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Of course there is no guarantee that an induced character is irreducible. However, if
χG =

∑
i riχi then [χG, χG] =

∑
i r

2
i . In this case we easily compute [χG, χG] = 1.

Therefore χG is irreducible, and we may add it to our table. Next let η be the irreducible
character of H of degree 4 (called χ2 in Example 7.4). In the same way, we compute the
following values for the induced character ηG:

g (1) (12) (12)(34) (123) (1234) (12345) (123)(45)
ηG(g) 8 0 0 2 0 −2 0

Now we determine [ηG, ηG] = 2. The only way to have
∑

i r
2
i = 2 is if two ri’s are 1 and

the rest zero; therefore ηG is the sum of two distinct irreducible characters of G. It is easy
to check that [ηG, χi] = 0 for i= 1, 2. But [ηG, χ3] = 1, so ηG is the sum of χ3 and another
irreducible character of degree 4, say χ6. This gives the values of χ6 = ηG − χ3, and the
remaining irreducible character χ7 is determined by the orthogonality relations. Finally,
the character table of G is as follows:

|CG(g)| 120 12 8 6 4 5 6
g (1) (12) (12)(34) (123) (1234) (12345) (123)(45)

χ1 1 1 1 1 1 1 1
χ2 1 −1 1 1 −1 1 −1
χ3 4 2 0 1 0 −1 −1
χ4 5 −1 1 −1 1 0 −1
χ5 6 0 −2 0 0 1 0
χ6 4 −2 0 1 0 −1 1
χ7 5 1 1 −1 −1 0 1

Finally, let us give a further illustration of Frobenius reciprocity using the above notation:
we may directly compute

[ηG, χi]G =
{

1, i= 3 or 6
0, otherwise

and this agrees with [η, (χi)H ]H , which is also easy to compute using the information of
Example 7.4.

23



9. Induced Representations

Now we show how representations of a subgroupH ≤ Gmay be ‘induced’ to representations

of G. The character associated to such an induced representation will turn out to be the

induced character defined in the previous section, and this provides the justification for

calling the χG of Section 8 a character.

Let H ≤ G, and choose a right transversal T of H in G, so that |T | = [G :H] and

G =
⋃
t∈T Ht, as we did prior to Lemma 8.3. Let π : H → GL(V ) be a representation

of H. We assume that n = dimV is finite, but it is not necessary to place any restrictions

on the field F . We consider V as not only a vector space over F , but also a module for

the group algebra FG.

Now the usual tensor product of V with FG (over F ) gives a vector space of dimension

(dimV )(dimFG) = n|G|, denoted V ⊗ FG or V ⊗F FG. If {v1, v2, . . . , vn} is a basis for

V , then {vi⊗ g : 1≤i≤n, g∈G} is a basis for V ⊗F FG. We make V ⊗F FG into an

FG-module by defining (v⊗ g)a = v ⊗ (ga) for v ∈V , g ∈G, a∈FG.

We are more interested in the tensor product of V and FG over FH, denoted

V ⊗FH FG. This is obtained as a quotient of V ⊗F FG in which we identify v⊗hg =

vh⊗ g for all v∈ V , g ∈G, h∈H. (Note: vh means h acts on the vector v via π.) Since

every g ∈G can be written uniquely as g = ht for some h∈H and t∈ T , we may write

v⊗ g = v⊗ht = vh⊗ t. Thus {vi⊗ t : 1≤i≤n, t∈ T} is a basis for V ⊗
FH

FG, and we

have dim(V ⊗
FH

FG) = n[G :H]. We define the induced module as V G = V ⊗
FH

FG,

with the action of FG defined above. The induced representation is the corresponding

representation πG : G→ GL(V G).

9.1 Example. Consider the representation π3 ofH = S3 defined in Example 1.1. Consider

H as a subgroup of G = S4, with right transversal T = {(1), (12)(34), (13)(24), (14)(23)}.
(Note: In general we cannot hope that T is a subgroup of G.) We will obtain the induced

representation πG3 , of degree 2[G :H] = 8. Let {e1, e2} be the standard basis of V = C2,

the module corresponding to π3. Then

(
e1 ⊗ (1)

)
(12) = e1 ⊗ (1)(12) = e1 ⊗ (12) = e1(12)⊗ (1) = e2 ⊗ (1),(

e2 ⊗ (1)
)
(12) = e2 ⊗ (1)(12) = e2 ⊗ (12) = e2(12)⊗ (1) = e1 ⊗ (1),(

e1 ⊗ (12)(34)
)
(12) = e1 ⊗ (12)(34)(12) = e1 ⊗ (12)(12)(34) = e1(12)⊗ (12)(34)

= e2 ⊗ (12)(34),(
e2 ⊗ (12)(34)

)
(12) = e2 ⊗ (12)(34)(12) = e2 ⊗ (12)(12)(34) = e2(12)⊗ (12)(34)

= e2 ⊗ (12)(34),
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(
e1 ⊗ (13)(24)

)
(12) = e1 ⊗ (13)(24)(12) = e1 ⊗ (12)(14)(23) = e1(12)⊗ (14)(23)

= e2 ⊗ (14)(23),(
e2 ⊗ (13)(24)

)
(12) = e2 ⊗ (13)(24)(12) = e2 ⊗ (12)(14)(23) = e2(12)⊗ (14)(23)

= e1 ⊗ (14)(23),(
e1 ⊗ (14)(23)

)
(12) = e1 ⊗ (14)(23)(12) = e1 ⊗ (12)(13)(24) = e1(12)⊗ (13)(24)

= e2 ⊗ (13)(24),(
e2 ⊗ (14)(23)

)
(12) = e2 ⊗ (14)(23)(12) = e2 ⊗ (12)(13)(24) = e2(12)⊗ (13)(24)

= e1 ⊗ (13)(24).

This shows that with respect to the ordered basis
{
e1⊗(1), e2⊗(1), . . . , e2⊗(14)(23)

}
, we

have the matrix

πG3
(
(12)

)
=

⎛
⎜⎜⎜⎜⎜⎜⎝

0
1

1
0

0
1

1
0

0
1

1
0

0
1

1
0

⎞
⎟⎟⎟⎟⎟⎟⎠
.

Note the block form of this matrix. The blocks are in a 4× 4 permutation matrix pattern,
corresponding to the way (12) permutes the four right cosets of H. Similar computations
give the remaining matrices πG3 (g). We present here just a few more examples:

πG3
(
(1)

)
=

⎛
⎜⎜⎜⎜⎜⎜⎝

1
0

0
1

1
0

0
1

1
0

0
1

1
0

0
1

⎞
⎟⎟⎟⎟⎟⎟⎠
, πG3

(
(123)

)
=

⎛
⎜⎜⎜⎜⎜⎜⎝

ω
0

0
ω

ω
0

0
ω

ω
0

0
ω

ω
0

0
ω

⎞
⎟⎟⎟⎟⎟⎟⎠
,

πG3
(
(12)(34)

)
=

⎛
⎜⎜⎜⎜⎜⎜⎝

1
0

0
1

1
0

0
1

1
0

0
1

1
0

0
1

⎞
⎟⎟⎟⎟⎟⎟⎠
, πG3

(
(1234)

)
=

⎛
⎜⎜⎜⎜⎜⎜⎝

0
ω
ω
0

0
ω
ω
0

0
ω
ω
0

0
ω
ω
0

⎞
⎟⎟⎟⎟⎟⎟⎠
.

From these we may obtain the associated character χG, which has values given by

g (1) (12) (12)(34) (123) (1234)
χG(g) 8 0 0 −1 0

As an exercise, you can check that this agrees with the induced character χG defined in
Section 8, where χ is the character associated with π3. The next result shows that this
works in general.
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9.2 Theorem. Let π : H → GL(V ), where H ≤ G, and let χ be the character associated
with π. Then the character associated with πG is the induced character χG defined in
Section 8.

Proof. Recall that
{
vi⊗ t : 1≤i≤n, t∈T}

is a basis for V G, in our earlier notation. For
each g ∈ G, we have (v⊗ t)g = v⊗ tg = v⊗ht′ = vh⊗ t′, where we have written tg = ht′

for some h∈H and t′ ∈ T uniquely determined by g and t. Thus g (or more precisely,
πG(g)) maps V ⊗ t to V ⊗ t′, where V ⊗ t =

{
v⊗ t : v∈ V }

. Now V G is a direct sum
of the subspaces V ⊗ t, each of dimension n, so the matrix of πG(g) consists of n×n
blocks in a permutation pattern, as in Example 9.1. The only blocks which contribute to
trπG(g) are those on the diagonal, i.e. those for which t′ = t. Equivalently, those for which
h = tgt−1 ∈ H. For such g and t, we have (v⊗ t)g = v(tgt−1)⊗ t, and the trace of the
corresponding n× n block is trπ(tgt−1) = χ(tgt−1). The total trace of πG(g) is the total
contribution from such diagonal blocks, which is

∑
t : tgt−1∈H χ(tgt−1) =

∑
t∈T χ̂(tgt−1) =

χG(g).

10. Frobenius Groups
In this section we present an application of character theory to Frobenius groups. However,
we begin with just a few further facts about characters and representations.

The kernel of a representation π : G→ GL(n,C) is {g ∈G : π(g)= I}. Interestingly,
it is possible to tell whether a given g ∈ G lies in kerπ simply by examining its trace,
χ(g) = trπ(g). For if π(g) = I (the n×n identity) then χ(g) = n, the degree of the
representation. Conversely, suppose that χ(g) = n. Recall from the proof of Lemma 5.1
that π(g) is similar to diag(ε1, ε2, . . . , εn) where each εi is a root of unity, and χ(g) =

∑
i εi.

Evidently the only way to have
∑n

i=1 εi = n is if every εi = 1, in which case π(g) is similar
to I, so π(g) = I. This proves the following.

10.1 Proposition. Let π : G → GL(n,C) be a represetnation of a finite group G, and
let χ be its associated character. Then π(g) = I if and only if χ(g) = n.

We define kerχ = {g ∈G : χ(g)= n}, the kernel of the character χ. Since χ is not a
homomorphism for n > 1, this is not the usual usage of the word ‘kernel’; however since
kerχ = kerπ, it is the kernel of some homomorphism (namely, π) and as such, it is a
normal subgroup of G. We can get several normal subgroups of G by taking intersections
of various kerχ for certain choices of irreducible characters χ. It may not be obvious that
every normal subgroup of G can be obtained in this way, but we will show this.

First, we show that
⋂
χ∈IrrG

kerχ = 1. To see this, suppose that 1 �= g ∈G. Then g and
1 lie in distinct conjugacy classes of G, so by Corollary 5.7, the columns of the character
table of G corresponding to these two conjugacy classes are perpendicular, hence linearly
independent, and hence distinct. So χ(g) �= χ(1) = n for some χ ∈ IrrG.

Next, suppose that K is any normal subgroup of G. By a homework assignment, every
irreducible character of G/K gives an irreducible character of G. (For each ψ ∈ IrrG/K , we
define ψ′(g) = ψ(gK). Then ψ′ is well-defined and ψ′ ∈ IrrG.) By the previous paragraph,
we have

⋂
ψ∈IrrG/K

kerψ = K =
⋂
ψ∈IrrG/K

kerψ′. This proves the following.
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10.2 Proposition. Every normal subgroup of G is of the form
⋂

kerχ as χ ranges over

some subset of IrrG.

We are now ready for Frobenius groups. Let G be a permutation group acting on a
finite set Ω of cardinality n> 1, i.e. G ≤ Sym Ω ∼= Sn. We call G a Frobenius group if

(i) G acts transitively on Ω,
(ii) the stabilizer of a point of Ω is nontrivial, and
(iii) every nonidentity element of G fixes at most one point.

Since every transitive permutation action is equivalent to the action on the right cosets
of the point stabilizer, we may give an alternative definition of Frobenius groups which
is completely internal to G, without regard to Ω. Thus G is a Frobenius group if it has
a proper nontrivial subgroup H such that H ∩ Hg = 1 for all g ∈ G ................H. To see that
the second definition follows from the first, let G be a Frobenius group acting on Ω, and
let H = GX , the stabilizer of a point X ∈ Ω (chosen arbitrarily). Then H is a proper
subgroup of G since [G : H] = |Ω| = n > 1, and H �= 1 by (ii). If g ∈ G ................H, then
Xg �= X and the stabilizer of Xg ∈ Ω is Hg = g−1Hg. Condition (iii) says that only the
identity fixes both X and Xg, so H ∩ Hg = 1. The converse is proven similarly. It may
seem possible that a given group G might be a Frobenius group relative to more than one
choice of subgroup H. However, this does not happen: if G is a Frobenius group, then
there exists (up to conjugacy) a unique subgroup H satisfying the above condition, and so
G has a unique (up to equivalence) permutation representation as a Frobenius group. We
will not prove this fact here.

The following is the main result of this section.

10.3 Theorem (Frobenius). Let G be a Frobenius group acting on Ω. Then G = K×H
where H is a point stabilizer, and

K =
(
G................

⋃
g∈G

Hg
)
∪ {1} =

{
g ∈G : g fixes no points of Ω

} ∪ {1} .

We call K (as above) the Frobenius kernel and H the Frobenius complement. Note
that it is easy to define K (and in fact we have given two equivalent conditions of K).
The hard part is showing that this K gives a subgroup of G, and amazingly, the only
known proof of this uses character theory! Indeed, it is possible to prove much more using
character theory. For example, K must be nilpotent, and there are strong restrictions on
H as well. We will not prove these further results here.

Before proceeding with a proof of Theorem 10.3, we require the following.

10.4 Lemma. Let θ be a class function of H such that θ(1) = 0. Then (θG)H = θ.

Proof. By definition, for each g ∈ G we have (θG)H(g) = 1
|H|

∑
x∈G θ̂(xgx

−1). In particu-
lar,

(θG)H (1) =
1
|H|

∑
x∈G

θ(1) = 0.
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If 1 �= h ∈ H, then (θG)H(h) = 1
|H|

∑
x∈G θ̂(xhx

−1) only has nonzero values for x ∈ H.
Then

(θG)H(h) =
1
|H|

∑
x∈H

θ(xhx−1) =
1
|H| ·|H|θ(h) = θ(h) .

Proof of Theorem 10.3. Condition (iii) above shows that NG(H) = H. Now the number
of conjugates of H in G is [G : NG(H)] = [G : H] = n, and these conjugates intersect in
only the identity, so

|K| = |G| − [G :H]
(|H| − 1

)
= |G| − |G| + [G :H] = [G :H].

Choose any nonprincipal character ψ ∈ IrrH . Define a class function of H by θ =
ψ − ψ(1)1H , so that θ(1) = 0. Then Lemma 10.4 gives (θG)H = θ. Now define ψ∗ =
θG +ψ(1)1G. Then by the Frobenius Reciprocity Theorem 8.2, we have

[ψ∗, ψ∗]G = [θG, θG]G + 2ψ(1)[θG, 1G]G + ψ(1)2[1G, 1G]G
= [θ, (θG)H ]H + 2ψ(1)[θ, 1H ]H + ψ(1)2

= [θ, θ]H + 2ψ(1)
(−ψ(1)

)
+ ψ(1)2

= 1 + ψ(1)2 − 2ψ(1)2 + ψ(1)2

= 1 .

However, ψ∗ = θG +ψ(1)1G is a Z-linear combination of characters, so ±ψ∗ ∈ IrrG. But
if h∈H, then ψ∗(h) = θG(h)+ψ(1) = θ(h)+ ψ(1) = ψ(h). This means that (ψ∗)H = ψ,
and in particular, ψ∗(1) = ψ(1) > 0, and so ψ∗ ∈ IrrG.

Define M =
⋂
ψ∈IrrH

kerψ∗. Then M ≤G. We will show that M = K. If h ∈M ∩H,
then for every nonprincipal character ψ ∈ IrrH , we have ψ(h) = ψ∗(h) = ψ∗(1) = ψ(1).
By the arguments preceding Proposition 10.2, this implies that h=1. Since M ≤ G, for
every g∈G we obtain M ∩ Hg = (M ∩ H)g = 1g = 1, and so M ⊆ K. Conversely, if
1 �= g ∈K (i.e. g lies in no conjugate of H) then θG(g) = 1

|H|
∑

x∈G θ̂(xgx
−1) = 0, and so

ψ∗(g) = θG(g)+ψ(1) = ψ(1) = ψ∗(1), i.e. g ∈ kerψ∗ for all ψ ∈ IrrH . This means that
g ∈M , i.e. K ⊆M , and so as claimed, K = M , a normal subgroup of G.

Finally, |KH| = |K||H|/|K ∩H| = |K||H| = |G| and so G = KH = K ×H.
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11. The Center of the Group Algebra
Let G be a finite group, with conjugacy classes K1 = {1}, K2, . . . , Kk; irreducible rep-
resentations π1, π2, . . . , πk, and irreducible characters IrrG =

{
χ1=1G, χ2, . . . , χk

}
. As

seen before, the center of the group algebra, Z(CG), is k-dimensional. Namely, Z(CG)
is the set of all

∑
g∈G agg such that the coefficients ag ∈ C are constant on conjugacy

classes. So a basis for Z(CG) is
{
γ1=1, γ2, . . . , γk

}
where γi =

∑
g∈Ki

g. As we might
anticipate from Theorem 4.4, character theory has much to tell about CG and conjugacy
classes. Especially, we will use character theory to answer the question: can we write an
element g ∈ K� as a product xy with x∈Ki and y ∈Kj? If so, in how many ways is this
possible? Note that the answers to these questions cannot depend on which representative
g ∈K� we choose, since conjugation acts transitively on each conjugacy class. The answers
can only depend on i, j and �.

Let aij� be the number of ways each g ∈ K� can be written as xy with x∈Ki and
y ∈Kj . So the constants aij� are non-negative integers, which we must evaluate. Also it
is clear that

(11.1) γiγj =
k∑
�=1

aij�γl .

So the structure of the algebra Z(CG) is completely determined by the constants aij�, since
Z(CG) is first of all a k-dimensional vector space over C; and secondly, Z(CG) is a ring
with products defined by (11.1). So the constants aij� are called structure constants of
the algebra Z(CG).

Consider any matrix representation π : G → GL(n,C). Then there is a unique
extension of π to an algebra homomorphism, also denoted π, namely

π : CG→M(n,C), π
(∑
g∈G

agg
)

=
∑
g∈G

agπ(g) .

It is easy to check that this extension preserves multiplication:

π
((∑
g∈G

agg
)(∑
h∈G

bhh
))

= π
(∑
g∈G

∑
h∈G

agbhgh
)

=
∑
g∈G

∑
h∈G

agbhπ(gh)

=
∑
g∈G

∑
h∈G

agbhπ(g)π(h) =
(∑
g∈G

agπ(g)
)(∑
h∈H

bhπ(h)
)

= π
(∑
g∈G

agg
)
π
(∑
h∈H

bhh
)
;

and similarly, π is C-linear, so in fact π : CG→M(n,C) is an algebra homomorphism.
Now suppose that α ∈ CG and z ∈ Z(CG). Then π(z)π(α) = π(zα) = π(αz) =

π(α)π(z). This says that π(z) commutes with all matrices π(a) for a ∈ CG, and in
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particular π(z) commutes with all matrices π(g) for g∈G. By Schur’s Lemma 3.2, π(z) is
a scalar multiple of the n×n identity matrix I, so

π(z) = ωχ(z)I for all z ∈ Z(CG) .

Here we have called the scalar ωχ(z) ∈ C. We could have called it ωπ(z), since it depends
on the choices of both z ∈ Z(CG) and the representation π; however, since π is uniquely
determined by its associated character χ (see Corollary 5.6), it is customary to instead
write ωχ(g). Since π : CG →M(n,C) is an algebra homomorphism, it is easy to see that
ωχ : Z(CG) → C is an algebra homomorphism. The values of ωχ are determined by the
values on the basis {γi} of Z(CG). These values determined by the following.

11.2 Proposition. For any character χ of G, and any class sum γi , the value of ωχ(γi)
is an algebraic integer given by

ωχ(γi) =
|Ki|χ(gi)
χ(1)

where gi ∈ Ki.

Proof. Take traces on both sides of the equation π(γi) = ωχ(γi)I. The left side gives
trπ(γi) = |Ki|trπ(gi) = |Ki|χ(gi). The right side gives ωχtr I = ωχχ(1) since I is a
square identity matrix of size degπ = χ(1). This gives the explicit formula for ωχ(γi)
given above.

Applying the algebra homomorphism ωχ : Z(CG) → C to (11.1), we obtain

(11.3) ωχ(γi)ωχ(γj) =
k∑
�=1

aij�ωχ(γl) .

Consider the k× k matrix A =
(
aij� : 1 ≤ j, � ≤ k

)
, where i is fixed, 1≤ i≤ k. According

to the above,

Av = ωχ(γi)v, where v =

⎛
⎜⎜⎝
ωχ(γ1)
ωχ(γ2)

...
ωχ(γk)

⎞
⎟⎟⎠ .

Let f(X) = det(XI−A), the characteristic polynomial of A. Then f(A) is the zero matrix,
so f(ωχ(γi))v = f(A)v = 0. Of course not all entries of v are zero; for example, the first
entry is ωχ(1) = |{1}|χ(1)/χ(1) = 1. Therefore f(ωχ(γi)) = 0. So ωχ(γi) is a root of
a monic polynomial f(X) having integer coefficients, since the entries of A are integers.
Thus ωχ(γi) is an algebraic integer.

11.4 Corollary. The structure constants of Z(CG) are given by

aij� =
|Ki||Kj |

|G|
∑

χ∈IrrG

χ(gi)χ(gj)χ(g�)
χ(1)

.
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Proof. Replace ωχ(γi) = |Ki|χ(gi)/χ(1), and similarly for j, � in (11.3) to obtain

|Ki||Kj |χ(gi)χ(gj)
χ(1)2

=
k∑
�=1

aij� |K�|χ(g�)
χ(1)

.

Multiply both sides by χ(1)χ(gs) and sum over χ ∈ IrrG to obtain

|Ki||Kj |
∑

χ∈IrrG

χ(gi)χ(gj)χ(gs)
χ(1)

=
k∑
�=1

aij�|K�|
∑

χ∈IrrG

χ(g�)χ(gs)

=
k∑
�=1

aij�|K�| |G||K�|δ�s = |G|aijs ,

using the column orthogonality relations, Corollary 5.7.

11.5 Corollary. The degrees of the irreducible representations of G divide |G|.
Proof. Let χ be an irreducible character of G. From [χ, χ] = 1 we obtain

|G| =
k∑
i=1

|Ki|χ(gi)χ(gi) = χ(1)
k∑
i=1

ωχ(γi)χ(gi) .

Thus
|G|
χ(1)

=
k∑
i=1

ωχ(γi)χ(gi) .

Since the set of algebraic integers form a ring, |G|/χ(1) is an algebraic integer. However,
|G|/χ(1) is rational; therefore |G|/χ(1) ∈ Z. That is, χ(1), which is the degree of the
corresponding irreducible representation, divides |G|.

12. Burnside’s Theorem
We come to another famous application of characther theory: a theorem of Burnside which
states that any group of order paqb (for primes p, q) is solvable. We need only a little more
terminology and preparation to prove this.

Let π : G → GL(n,C) be an irreducible representation of a finite group G. When
does π(g) commute with π(h) for all h ∈ G? By Schur’s Lemma 3.2, this can only happen
if π(g) is a scalar multiple of I. It is possible to detect whether this happens for a given
g ∈ G directly from the values of the associated character χ. Recall that π(g) is similar
to diag(ε1, ε2, . . . , εn) where each εi is a root of unity. The only way this can be a scalar
multiple of I is if ε1 = ε2 = · · · = εn, and this is equivalent to

∣∣∑
i εi

∣∣ = n. This immediately
gives
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12.1 Lemma. If π is an irreducible representation of G with associated character χ, then

π(g) commutes with π(G) if and only if
∣∣χ(g)

∣∣ = χ(1).

Accordingly, we define the center of χ to be Z(χ) =
{
g ∈G : |χ(g)|=χ(1)

}
.

12.2 Lemma. If χ ∈ IrrG, then g ∈ Z(χ) if and only if g kerχ ∈ Z(G/ kerχ). Thus

Z(χ)/ ker χ = Z
(
G/ kerχ

)
and Z(χ) ≤G.

Proof. The homomorphism π : G → π(G) < GL(n,C) has kernel kerπ = kerχ, so
π(G) ∼= G/ kerχ. Using this isomorphism and Lemma 12.1, we have g ∈ Z(χ) if and only
if π(g) ∈ Z

(
π(G)

)
, if and only if g kerχ ∈ Z

(
G/ kerχ

)
.

The heart of Burnside’s paqb theorem is the following. For this we need just a little
Galois Theory. If ε1, ε2, . . . , εn are roots of unity, they are all powers of some root of unity,
say ε where εm = 1. (We may take m to be the least common multiple of m1, m2, . . . , mn

where εmi
i = 1.) The field Q(ε1, . . . , εn) = Q(ε) is a Galois extension of Q, and it has

exactly φ(m) = [Q(ε) : Q] automorphisms. We denote these automorphisms by σs for
those integers s such that 1≤ s≤m and (s,m) = 1. (The number of such integers denoted
φ(m), and φ is known as Euler’s function.) Each σs fixes every element of Q, and maps
ε �→ εs. Since every element of Q(ε) is of the form f(ε) for some polynomial f(X) ∈ Q[X],
the action of σs on Q(ε) is determined by f(ε) �→ f(εs). These automorphisms form a
group Gal

(
Q(ε)/Q

)
= {σs : 1≤s≤m, (s,m)= 1}, called the Galois group of the extension

field Q(ε). By the Fundamental Theorem of Galois Theory, the only elements of Q(ε) fixed
by all σs are the rationals x ∈ Q.

12.3 Theorem (Burnside). Let χ ∈ IrrG, and let g ∈ Ki where Ki is a conjugacy class

of G. Suppose that
(
χ(g), |Ki|

)
= 1. Then either g ∈ Z(χ) or χ(g) = 0.

Proof. We may choose u, v ∈ Z such that uχ(1) + v|Ki| = 1. Then

χ(g)
χ(1)

= uχ(g) + v
|Ki|χ(g)
χ(1)

.

Since χ(g) and |Ki|χ(g)/χ(1) are algebraic integers (see Proposition 11.2), it follows that
α = χ(g)/χ(1) is an algebraic integer. Suppose that g /∈ Z(χ). Then |χ(g)| < χ(1), so
|α| < 1. We must show that χ(g) = 0, or equivalently that α = 0.

As usual, we have χ(g) =
∑n
i=1 εi where the εi’s are roots of unity. Since g /∈ Z(χ), the

εi are not all the same. Let σ be an automorphism of Q(ε1, . . . , εn). Then εσ1 , . . . , εσn are
roots of unity, not all the same, so

∣∣χ(g)σ
∣∣ =

∣∣∑
i ε
σ
i

∣∣ < n = χ(1). This proves that |ασ| < 1
for every σ ∈ Gal

(
Q(ε)/Q

)
. Define β =

∏
σ α

σ ∈ Q(ε), where the product ranges over
all σ ∈ Gal

(
Q(ε)/Q

)
. For any τ ∈ Gal

(
Q(ε)/Q

)
, we have βτ =

∏
σ α

στ =
∏
σ′ ασ

′
= β,

so by the preceding remarks, β ∈ Q. However, α is an algebraic integer, and so every
ασ is an algebraic integer. This means that β is an algebraic integer, so β ∈ Z. Since
|β| =

∏
σ |ασ| < 1, we must have β = 0. This can only happen if ασ = 0 for some σ, i.e.

α = 0 as required.
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12.4 Theorem. Let G be a nonabelian simple group, and Ki a conjugacy class of G. If

|Ki| is a prime power, then Ki = {1}.
Proof. Suppose that |Ki| = pa where p is a prime, Ki �= {1}, and choose g ∈ Ki.
Suppose that χ �= 1G is an irreducible character of G. Then kerχ = 1 since χ �= 1G;
and Z(χ)/ ker χ = Z

(
G/ kerχ

)
= 1 implies that Z(χ) = 1. If p � ∣∣ χ(1), then χ(g) = 0 by

Theorem 12.3. By the column orthogonality relations, Corollary 5.7, we have

0 =
∑

χ∈IrrG

χ(g)χ(1) = 1 +
∑

χ∈IrrG
p|χ(1)

χ(g)χ(1) .

(The term 1 comes from the principal character 1G.) Thus

−1
p

= 1 +
∑

χ∈IrrG
p|χ(1)

χ(g)
χ(1)
p

,

where the right side is an algebraic integer, but the left side is not, a contradiction.

12.5 Theorem (Burnside). Let G be a group of order paqb where p, q are primes. Then

G is solvable.

Proof. If G has a nontrivial normal subgroup N , then by induction on |G|, both N and
G/N are solvable, so G is also. So we may assume that G is simple. Furthermore, G is
nonabelian simple; otherwise we are done.

We may suppose that a > 1. Let P be a Sylow p-subgroup of G. Then Z(P ) �= 1.
Let 1 �= g ∈ Z(P ). Then CG(P ) ⊇ P , so the conjugacy class containing g has size
|gG| = [G :CG(P )]

∣∣ [G :P ] = qb, contrary to Theorem 12.4.
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