
Reed-Solomon Codes
(Handout October 10, 2008)

Let Fq be a finite field of order q. Recall that q = pr for some prime p and integer
r ≥ 1, and that Fq ⊇ Fp is an extension of degree r.

Lemma 1. For every nonzero a ∈ Fq , we have aq−1 = 1.

Proof. Consider the product of all nonzero elements of Fq , thus:

u =
∏

0 �=x∈Fq

x ∈ Fq .

Note that this product has q − 1 factors; and since the field elements commute, the value
of the product u does not depend on the order in which we multiply together these factors.
In particular if we substitute y = ax, we simply permute the factors in this product (the
map x �→ ax is bijective since its inverse is the map x �→ a−1x). So

u =
∏

0 �=x∈Fq

(ax) ∈ Fq = aq−1
∏

0 �=x∈Fq

x = aq−1u ∈ Fq .

Moreover u �= 0 since it is a product of nonzero field elements; so we may cancel u’s to
obtain aq−1 = 1.

By convention, we agree that 00 = 1.

Lemma 2. Let k ∈ {0, 1, 2, . . . , q−1}. Then

∑
a∈Fq

ak =
{

0, if k ∈ {0, 1, 2, . . . , q−2};
−1, if k = q−1.

Proof. First suppose k ∈ {0, 1, 2, . . . , q−2} and consider the sum of k-th powers of the
field elements:

Sk =
∑
x∈Fq

xk.

1



For every nonzero value a ∈ Fq , the map x �→ ax is bijective (just as in the proof of
Lemma 1) so we may substitute y = ax for x in the definition of Sk (which merely
permutes the terms in the sum). Thus

Sk =
∑
x∈Fq

(ax)k = ak
∑
x∈Fq

xk = akSk

for all nonzero values of a ∈ Fq . If Sk �= 0 then we may cancel Sk’s to obtain ak = 1 for
all nonzero k ∈ Fq . This means that the polynomial Xk − 1 ∈ Fq[X] has q − 1 distinct
roots in Fq . This is impossible since the polynomial Xk − 1 has degree only k ≤ q − 2.
Our assumption that Sk �= 0 has led to this contradiction; therefore in fact we must have
Sk = 0 for all k ∈ {0, 1, 2, . . . , q−2}.

Finally consider the case k = q−1. We have

Sq−1 =
∑
x∈Fq

xq−1 = q − 1

since 0q−1 = 0, whereas the remaining q−1 terms in the sum all have value 1 by Lemma 1.
Here we must interpret the right hand side q−1 as an element of Fq , and in fact an element
of the subfield Fp where we reduce mod p to obtain p−1, or simply−1, as our final answer.

In 1960, Irving Reed and Gustave Solomon designed an infinite family of MDS codes
using properties of finite fields. (The banner at the top of our course handouts pictures
Reed at the far left, and Solomon next to him.) The first significant application of these
codes was for the encoding of transmissions from the Voyager spacecraft launched during
the 1970’s. Beginning in the late 1980’s, Reed Solomon codes found application in the
encoding of digital information used in CD’s, DVD’s, video game devices, electronic data
storage media, and a host of other devices. Most of these applications use fields of order q =
2r for convenience (the field of order 256 = 28 being a popular choice; note that elements
of F256 are conveniently representable as computer bytes, i.e. bitstrings of length 8). For
ease of notation, we begin with the case of prime fields, and later point out that general
finite fields are really no harder to work with than prime order fields.

Consider the field Fp = {0, 1, 2, . . . , p−1} of prime order p and fix k ∈ {1, 2, . . . , p−2}.
Consider the code

C =
{
(f(0), f(1), f(2), . . . , f(p−1)) : f(t) ∈ Fp[t] of degree < k

} ≤ F
p
p .

This is actually a linear code of length p over Fp ; for example if we add the codewords
corresponding to two polynomials f(t) and g(t), we obtain the codeword corresponding

2



to the polynomial f(t)+g(t). Every polynomial f(t) ∈ Fp[t] of degree less than k has the
form

f(t) = a0 + a1t + a2t
2 + · · · + ak−1t

k−1

where a0, a1, . . . , ak−1 ∈ Fp . There are pk such polynomials f(t) (since there are p choices
for each coefficient ai). If f(t) is not the zero polynomial, it has at most deg(f(t)) ≤ k− 1
zeroes, so the corresponding codeword (f(0), f(1), . . . , f(p−1)) has at least p − (k − 1)
nonzero entries. Thus C has minimum weight at least p−k+1. The same argument shows
that the linear map f(t) �→ (f(0), f(1), f(2), . . . , f(p−1)) is nonsingular, so the code C has
dimension k. Now C is a [p, k, p−k+1]-code, called a Reed-Solomon code. Since it meets
the Singleton bound, it is an MDS code.

A generator matrix for the Reed-Solomon code of length p and dimension k is given
by

G =

⎡
⎢⎢⎢⎢⎣

1 1 1 · · · 1
0 1 2 · · · p−1
02 12 22 · · · (p−1)2
...

...
...

...
0k−1 1k−1 2k−1 · · · (p−1)k−1

⎤
⎥⎥⎥⎥⎦ .

A typical message word x = (a0, a1, a2, . . . , ak−1) ∈ F
k
p is encoded as

xG = ((f(0), f(1), f(2), . . . , f(p−1)) ∈ F
p
p

where
f(t) = a0 + a1t + a2t

2 + · · · + ak−1t
k−1 ∈ Fp[t].

By Lemma 2, the rows of the matrix

H =

⎡
⎢⎢⎢⎢⎣

1 1 1 · · · 1
0 1 2 · · · p−1
02 12 22 · · · (p−1)2
...

...
...

...
0p−k−1 1p−k−1 2p−k−1 · · · (p−1)p−k−1

⎤
⎥⎥⎥⎥⎦

are orthogonal to the rows of G. But from what we have already seen, H is a generator
matrix for a Reed-Solomon [p, p−k, k+1]-code; in particular the rank of H is p−k and H

is a parity check matrix for C.
We have just observed that the dual of a Reed-Solomon code is another Reed-Solomon

code, of the complementary dimension. It is not hard to show that, more generally, the
dueal of every MDS code is MDS.

Finally, the entire description above works just as well for an arbitrary finite field
Fq = {u0, u1, u2, . . . , uq−1}. (Only the notation is a little more involved since the field

3



elements are not simply 0, 1, 2, . . . , q−1 unless q is prime.) The Reed-Solomon code of
dimension k ∈ {1, 2, . . . , q−2} is the [q, k, q−k+1]-code over Fq consisting of all vectors of
the form

(f(u0), f(u1), f(u2), . . . , f(uq−1)) ∈ F
q
q

where the polynomial f(t) ∈ Fq[t] has degree less than k.

Example. Take q = 7, k = 4. The matrix

⎡
⎣ 1 1 1 1 1 1 1

0 1 2 3 4 5 6
0 1 4 2 2 4 1

⎤
⎦

is a generator matrix for a Reed Solomon [7, 3, 5]-code C over F7 . We obtain a reduced
row echelon form

G =

⎡
⎣ 1 0 0 1 3 6 3

0 1 0 4 6 6 4
0 0 1 3 6 3 1

⎤
⎦

as an alternative generator matrix for C. Note that C is a 2-error correcting code since⌊
5−1
2

⌋
= 2.

4



HW#2 Due Mon Oct 20, 2008

1. Let C be the linear code of length 5 and dimension 3 defined over F2 by the generator
matrix

G =

⎡
⎣ 1 1 1 0 1

0 1 0 1 1
1 1 0 1 0

⎤
⎦ .

(a) Use Gaussian elimination to find a new generator matrix for C in reduced row-
echelon form.

(b) How many codewords are in C? List them all.

(c) What is the minimum weight of C? Give an example of a codeword having this
minimum weight.

(d) Find a parity check matrix for C.

2. Let C be the Reed-Solomon code of length 11 and dimension 3 defined over F11 .

(a) Write down a generator matrix for C using the definitions.

(b) Use Gaussian elimination to find a new generator matrix for C in reduced row-
echelon form.

(c) What is the minimum weight of C? Give an example of a codeword in C having
this minimum weight.

(d) How many errors can C correct? Justify your answer using (c).

(e) Find the unique closest codeword to (2, 10, 2, 1, 4, 8, 5, 5, 8, 3, 1). (Hint: this word
has distance 2 from a codeword.)

3. Let C be the Reed-Solomon code of length 8 and dimension 3 over F8 .

(a) How many codewords does C have?

(b) How many codewords of each weight does C have? (Do not list them all! Make
sure the total number of codewords agrees with your answer in (a).)

5


