
 

Projective Planes 
 

A projective plane is an incidence system of points and lines satisfying the following axioms: 

 

 (P1)   Any two distinct points are joined by exactly one line. 

 (P2)   Any two distinct lines meet in exactly one point. 

 (P3)   There exists a quadrangle: four points of which no three are collinear. 

 

In class we will exhibit a projective plane 

with 57 points and 57 lines: the game of 

SpotIt®.  (Actually the game is sold with 

only 55 lines; for the purposes of this 

class I have added the two missing lines.)  

The smallest projective plane, often 

called the Fano plane, has seven points 

and seven lines, as shown on the right. 

 

 

 

 

 

The second smallest 

projective plane, 

having thirteen 

points 0, 1, 2, …, 12 

and thirteen lines A, 

B, C, …, M is 

shown on the left. 

 

 

 

 

 

 

These two planes are coordinatized by the fields of order 2 and 3 respectively; this accounts for 

the term ‘order’ which we shall define shortly. 

 

Given any field 𝐹, the classical projective plane over 𝐹 is constructed from a 3-dimensional vector 

space 𝐹3 = {(𝑥, 𝑦, 𝑧) ∶ 𝑥, 𝑦, 𝑧 ∈ 𝐹} as follows: 
 

 ‘Points’ are one-dimensional subspaces 〈(𝑥, 𝑦, 𝑧)〉.  Here (𝑥, 𝑦, 𝑧) ∈ 𝐹3 is any nonzero 

vector; it spans a one-dimensional subspace 〈(𝑥, 𝑦, 𝑧)〉 = {𝜆(𝑥, 𝑦, 𝑧) ∶ 𝜆 ∈ 𝐹}.  Recall that 

𝜆(𝑥, 𝑦, 𝑧) = (𝜆𝑥, 𝜆𝑦, 𝜆𝑧). 

The Fano Plane (of order 2): 
 

7 points, 7 lines 
 

3 points on each line 

3 lines through each point 

The Projective Plane of order 3: 
 

13 points, 13 lines 
 

4 points on each line 

4 lines through each point 



 ‘Lines’ are two-dimensional subspaces {(𝑥, 𝑦, 𝑧) ∶ 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 = 0}.  Here 𝑎, 𝑏, 𝑐 ∈ 𝐹 

are not all zero.  This line is represented by the column vector (
𝑎
𝑏
𝑐

); but any nonzero scalar 

multiple  𝜆 (
𝑎
𝑏
𝑐

) = (
𝜆𝑎
𝜆𝑏
𝜆𝑐

)  represents the same line; so actually it is the span 

〈(
𝑎
𝑏
𝑐

)〉 = {𝜆 (
𝑎
𝑏
𝑐

) ∶ 𝜆 ∈ 𝐹,   𝜆 ≠ 0} 

that represents the line. 
 

 Incidence is the usual containment between subspaces.  The point 〈(𝑥, 𝑦, 𝑧)〉 lies on the line 

〈(
𝑎
𝑏
𝑐

)〉  iff  0 = (𝑥, 𝑦, 𝑧) (
𝑎
𝑏
𝑐

) = 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧. 

 

For example, the classical projective plane over 𝔽2 = {0,1} is coordinatized as shown: 

 

 

 

 

 

 

 

 

 

 

 

 

Here nonzero scalar multiples play essentially no role, since the only nonzero scalar is 1.  A more 

representative example is the classical projective plane over 𝔽3 = {0,1,2} which is coordinatized 

as shown: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



I have not explicitly shown the coordinates for all points and lines, only a few; in class we filled 

in the missing coordinates for points and lines.  Because nonzero scalars are 1 and 2 in this case, 

we have two equivalent ways to label each point and each line; for example 〈(1,0,2)〉 = 〈(2,0,1)〉 
and we have arbitrarily chosen to label the corresponding point as (2,0,1). 

 

In class we will prove: 

 

The number 𝑛 appearing in this result is called the order of the projective plane.  What we actually 

show is that there is a bijection between the points on any line, and the points on any other line; 

also a bijection between the points on any line, and the lines through any point.  This number (the 

order) may be finite or infinite. 

 

There is a strong connection between affine planes and projective planes.  From a projective plane 

of order 𝑛, one constructs an affine plane of the same order by deleting any line and all 𝑛 + 1 

points on that line.  Conversely, given any affine plane of order 𝑛, one constructs a projective plane 

of the same order by adding a line ‘at infinity’ with 𝑛 + 1 points, one for each parallel class of 

lines in the affine plane.  The same process works for planes of infinite order; in particular from 

the real affine plane (i.e. the Euclidean plane), we obtain the real projective plane and vice versa. 

 

Projective (or affine planes) of order 𝑝𝑟 exist for every prime 𝑝 and integer 𝑟 ≥ 1.  In particular 

since there exists a field of every prime-power order, this yields a classical plane of the 

corresponding order.  Many non-classical finite planes (of prime-power order) are also known.  

However, it is not known if there exist any (projective or affine) planes of non-prime-power order.  

In particular, it is not known if there exists any plane of order 12. 

 

Plane geometry from the projective viewpoint offers many advantages over the affine viewpoint; 

in particular, if we dualize a projective plane by reversing the roles of points and lines, we obtain 

another projective plane.  This duality is not possible in the theory of affine planes since the dual 

of an affine plane is not an affine plane. 

 

For example, consider Pappus’ Theorem (valid 

in any classical plane): 

 

 

Theorem:  Any two lines in a projective plane have the same number of points.  This is the 

same as the number of lines through every point.  If this number is 𝑛 + 1, then the plane has 

altogether 𝑛2 + 𝑛 + 1 points and the same number of lines. 

Theorem (Pappus):  Let ℓ and 𝑚 be 

distinct lines.  Let 𝑃0, 𝑃1, 𝑃2 be distinct 

points of ℓ, and let 𝑄0, 𝑄1, 𝑄2 be distinct 

points of 𝑚.  Consider the lines ℓ𝑖𝑗 = 𝑃𝑖𝑄𝑗 

for all 𝑖, 𝑗.  For all 𝑖, 𝑗, 𝑘 distinct, consider the 

point 𝑅𝑘 = ℓ𝑖𝑗 ∩ ℓ𝑗𝑖.  Then the points 

𝑅0, 𝑅1, 𝑅2 are collinear. 



 

Dualizing gives the following corollary, valid 

also in any classical plane: 

 

 

 

 

 

 

Both these theorems are valid in the affine plane; but in the affine setting, they would require two 

separate (lengthy) proofs.  The economy of the projective viewpoint is that one proof suffices to 

prove both theorems.  This is because the dual of any classical projective plane is again a classical 

projective plane.  There are many other instances showing the superiority of the projective 

viewpoint. 

Theorem (Dual of Pappus’ Theorem):  

Let ℓ and 𝑚 be distinct points.  Let 𝑃0, 𝑃1, 𝑃2 

be distinct lines through ℓ, and let 𝑄0, 𝑄1, 𝑄2 

be distinct lines through 𝑚.  Consider the 

points ℓ𝑖𝑗 = 𝑃𝑖 ∩ 𝑄𝑗 for all 𝑖, 𝑗.  For all 𝑖, 𝑗, 𝑘 

distinct, consider the line 𝑅𝑘 = ℓ𝑖𝑗ℓ𝑗𝑖.  Then 

the lines 𝑅0, 𝑅1, 𝑅2 are concurrent. 


