
Pentagonal Numbers (Handout May, 2016)

The familiar sequences of triangular square numbers have a natural geometric interpreta-

tion:

This pattern extends to an entire sequence of sequences: the polygonal numbers. For

larger k, the k-gonal numbers are less natural to motivate; but we find the sequence of

pentagonal numbers worthy of special attention because of a surprising application to

partition theory as we will soon discover:

Explicit formulas for triangular, square and pentagonal numbers, and the associated gen-

erating functions, are easily deduced:

Tn = 1
2n(n + 1) Sn = n2 Pn = 1

2n(3n− 1)
∞∑

n=0
Tnx

n = x
(1−x)3

∞∑
n=0

Snx
n = x(1+x)

(1−x)3
∞∑

n=0
Pnx

n = x(1+2x)
(1−x)3

It is interesting to look at a table of values of Tn, Sn and Pn over a range of integer values

of n, including some negative values of n:

n −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8

Tn 28 21 15 10 6 3 1 0 0 1 3 6 10 15 21 28 36
Sn 64 49 36 25 16 9 4 1 0 1 4 9 16 25 36 49 64
Pn 100 77 57 40 26 15 7 2 0 1 5 12 22 35 51 70 92

You should notice that the triangular and square numbers take the same values for n 6 0

as for n > 0; this is explained by the relations

T−n−1 = Tn, S−n = Sn
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which are easily verified algebraically. In the case of pentagonal numbers, however, we get

new values

P−n = 1
2n(3n + 1)

which are not attained by the formula Pn = 1
2n(3n − 1) for n > 0. We may therefore

consider a pentagonal number to be any number of the form 1
2n(3n ± 1) for some n > 0;

and it is now reasonable to rearrange the pentagonal numbers into a single sequence as

0, 1, 2, 5, 7, 12, 15, 22, . . .. Here we illustrate the first few pentagonal numbers graphically:

In the upper sequence (n > 0) each pentagon of side n is composed of a square of side n

and a triangle of side n− 1, giving

Pn = Sn + Tn−1 = n2 + 1
2n(n− 1) = 1

2n(3n− 1);

while in the lower sequence, each pentagon is formed by a square and a triangle, both of

side n, yielding

P−n = Sn + Tn = n2 + 1
2n(n + 1) = 1

2n(3n + 1).

Although these pentagons appear less symmetrical than those in the original geometric

picture, the depiction here as as Ferrers diagrams relates more directly to our study of

partitions.

Partitions into Distinct Parts and Odd Parts

Recall the partition function p(n), defined as the number of partitions of n, i.e. the number

of ways to write n as a sum of positive integers, where the order of the terms does not

matter. We have seen that the ordinary generating function for p(n) is

(*)
∞∑

n=0

p(n)xn =
∞∏
k=1

1

1− xk
=
∞∏
k=1

∞∑
rk=0

xrkk =
∞∏
k=0

(1 + xk + x2k + x3k + · · ·).

Recall the explanation for this formula: after collecting terms on the right, the coefficient

of xn is the number of solutions of n = r1 + 2r2 + 3r3 + · · ·, i.e. the number of partitions

of n in which there are exactly rk parts of size k; and since the limits on k and the rk’s
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ensure that we count every partition of n exactly once, the coefficient of xn on the right

side is p(n).

We now refine this counting problem by asking for q(n), the number of partitions of n

into distinct parts; and po(n), the number of partitions of n into odd parts. For example,

q(8) = po(8) = 6: the six partitions of 8 into distinct parts are

8, 5+2+1, 4+3+1, 7+1, 6+2, 5+3

while the six partitions of 8 into odd parts are

7+1, 5+3, 5+1+1+1, 3+3+1+1, 3+1+1+1+1+1, 1+1+1+1+1+1+1+1.

It is no coincidence that q(8) = po(8); in general we have

Theorem 1. The number of partitions of n into distinct parts equals the number

of partitions of n into odd parts.

Proof. The generating function for q(n) and po(n) are found by modifying (*) to restrict

the type of partitions considered. For q(n) we restrict to those partitions of n having each

term k appear at most once, i.e. rk ∈ {0, 1}, which gives

Q(x) =

∞∑
n=0

q(n)xn =

∞∏
k=1

(1 + xk) = (1 + x)(1 + x2)(1 + x3) · · ·

= 1 + x + x2 + 2x3 + 2x4 + 3x5 + 4x6 + 5x7 + 6x8 + · · · .

For po(n) we restrict to those partitions of n having only odd terms k = 2j+1 appear,

each appearing any number of times rk ∈ {0, 1, 2, 3, . . .}, which gives

Po(x) =

∞∑
n=0

po(n)xn =

∞∏
j=1

1

1− x2j+1
=

1

(1− x)(1− x3)(1− x5)(1− x9) · · ·

= 1 + x + x2 + 2x3 + 2x4 + 3x5 + 4x6 + 5x7 + 6x8 + · · · .

Using Maple we can verify that these two series agree to as many terms as desired, which

certainly lends credibility to the statement we are trying to prove:
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To prove Theorem 1, multiply numerator and denominator of the Po(x) expansion by

(1− x2)(1− x4)(1− x6) · · · to obtain

Po(x) =
(1− x2)(1− x4)(1− x6)(1− x8)(1− x10)(1− x12) · · ·

(1− x)(1− x2)(1− x3)(1− x4)(1− x5)(1− x6)(1− x6)(1− x7)(1− x8) · · ·
.

After factoring each factor 1 − x2j = (1 − xj)(1 + xj) in the numerator and cancelling

factors with the denominator, we are left with

Po(x) = (1 + x)(1 + x2)(1 + x3)(1 + x4)(1 + x5)(1 + x6) · · · = Q(x).

Comparing the coefficient of xn on each side gives po(n) = q(n) as desired.

The preceding proof demonstrates the utility of generating functions; but we may be

left to wonder why an algebraic proof should be needed to prove a strictly combinatorial

fact. In fact a more combinatorial proof is possible. Such a proof would consist of an

explicit bijection between the set of partitions of n into distinct parts, and the set of

partitions of n into odd parts. This proof is a little less pretty (nothing as pretty as the

use of conjugate partitions in giving a bijection between partitions of n into k parts, and

partitions of n into parts of maximum size k). Rather than giving all the details, we only

sketch the proof and give n = 8 as an example: Given a partition of n into distinct parts
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as n = n1 + n2 + · · ·+ nk, factor each ni = 2cimi where ci > 0 and mi is the largest odd

divisor of ni. Split ni into 2ci parts of odd size mi to obtain a partition of n into
∑k

i=1 2ci

parts. The mi’s are not necessarily distinct (it is possible that mi = mj for some i 6= j);

nevertheless we obtain a one-to-one correspondence between partitions of n into distinct

parts, and partitions of n into odd parts, essentially because the binary representation of

every positive integer is unique (i.e. there is only one way to write a given positive integer

as a sum of distinct powers of 2). Here we illustrate this bijection in the case n = 8:

8 = 8·1 ↔ 1+1+1+1+1+1+1+1

7 + 1 ↔ 7 + 1

6 + 2 = 2·3 + 2·1 ↔ (3+3) + (1+1)

5 + 3 ↔ 5 + 3

5 + 2 + 1 = 5 + 2·1 + 1 ↔ (5) + (1+1) + (1)

4 + 3 + 1 = 4·1 + 3 + 1 ↔ (1+1+1+1) + (3) + (1+1)

Finally, for the promised connection to pentagonal numbers, we look at the pattern of even

and odd coefficients in the generating function Q(x) = Po(x). For this we simply reduce

modulo 2:

What you should observe is that the exponents that appear in the latter sum are precisely

the pentagonal numbers; i.e. q(n) = po(n) is odd if n is a pentagonal number, and even

otherwise. The explanation for this observation is the following: Denote by qe(n) and qo(n)
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the number of partitions of n into an even number of distinct parts, and an odd number

of distinct parts, respectively, so that

qe(n) + qo(n) = q(n).

Theorem 2. If n is not a pentagonal number, then qe(n) = qo(n) and so q(n) =

2qo(n) which is even. If n is a pentagonal number, say n = Pj , then qe(n) = qo(n) +

(−1)j and so q(n) = 2qo(n) + (−1)j which is odd.

From our enumeration of the six partitions of 8 into distinct parts, we have seen that

qe(8) = qo(8) = 3 as predicted by Theorem 2 since 8 is not a pentagonal number. In the

case n = 7 = P−2 we have qe(7) = 3 partitions into an even number of distinct parts:

6+1, 5+2, 4+3;

and qo(7) = 2 partitions into an odd number of distinct parts:

7, 4+2+1,

as predicted by Theorem‘2. In the case n = 12 = P3, we have qe(12) = 7 partitions into

an even number of distinct parts:

11+1, 10+2, 9+3, 8+4, 7+5, 6+3+2+1, 5+4+2+1;

and qo(12) = 8 partitions into an odd number of distinct parts:

12, 9+2+1, 8+3+1, 7+4+1, 7+3+2, 6+5+1, 6+4+2, 5+4+3,

once again as predicted by Theorem 2.

The key to proving Theorem 2 is the following almost-bijective correspondence be-

tween partitions of n with an even number of parts, and partitions of n with an odd number

of parts. Given a Ferrers diagram for a partition, denote by b the length of the bottom

row (i.e. the size of the smallest part in the partition) and let r number of cells on the

rightmost 45◦ line. In the following example, we have b = 4 and r = 3:
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If b 6 r, move the bottom row to the rightmost 45◦ line; but if b > r, move the rightmost

45◦ line down to the bottom. Here is one corresponding pair of partitions for n = 25:

and here is the complete correspondence for n = 8:

We obtain a well-defined bijection between partitions with an even number of distinct

parts, and partitions with an odd number of distinct parts, except when n is a pentagonal

number. If n = Pj where j > 0, then the correspondence fails just for the pentagonal

Ferrers diagram with j rows having b = r = j; whereas if n = P−j where j > 0, then the

correspondence fails just for the pentagonal Ferrers diagram with j rows having b = r+ 1

and r = j. Consider what happens in the cases n = P4 = 22 and n = P−4 = 26 as shown:

When n is not a pentagonal number, no such pentagonal Ferrers diagram exists, and we

obtain a well-defined bijection between partitions with an even number of distinct parts,

and partitions with an odd number of distinct parts, giving qe(n) = qo(n). For a pentago-

nal number n = Pj , there is just one left-over partition not covered by the bijection, and

it has j parts, so qe(n) = qo(n) + (−1)j . This proves the theorem.

Just as

Q(x) =
∞∑

n=0

q(n)xn =
∞∑

n=0

(
qe(n) + qo(n)

)
xn = (1 + x)(1 + x2)(1 + x3)(1 + x4) · · · ,
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we see that

(1− x)(1− x2)(1− x3)(1− x4) · · · =
∞∑

n=0

(
qe(n)− qo(n)

)
xn

=
∞∑
j=0

(−1)jxPj

= 1− x− x2 + x5 + x7 − x12 − x15 + · · ·

in which the only surviving terms are those whose exponents are pentagonal numbers!

The reason is that positive terms xn in the expansion of the latter product, correspond

to partitions of n into an even number of distinct parts; whereas negative terms −xn

correspond to partitions of n into an odd number of distinct parts. Noting that the latter

product is the reciprocal of

∞∑
n=0

p(n)xn =
1

(1− x)(1− x2)(1− x3)(1− x4) · · ·
,

we obtain the curious relation

(1− x− x2 + x5 + x7 − x12 − x15 + · · ·)
∞∑

n=0

p(n)xn = 1.

Comparing terms on both sides gives a recurrence formula for the partition function:

p(n) = p(n− 1) + p(n− 2)− p(n− 5)− p(n− 7) + p(n− 12) + p(n− 15)− · · ·

where we stop as soon as the argument becomes negative.
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