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The Partition Function

The partition function p(n) expresses the number of ways of partitioning n identical
objects into nonempty piles, where the order of the piles does not matter. For example,
p(4) = 5 since we have

4 = 3+1 = 242 = 24141 = 141+1+1.
Each partition is denoted as a tuple in which the sizes of the parts (‘piles’) are listed in
weakly decreasing order; for example the partition 4 = 24141 is denoted by (2,1,1) - 4
where the symbol ‘+’ means ‘is a partition of”. We also denote each partition graphically by
a Ferrers diagram (or Young diagram) whose rows indicate the parts of the partition.
For example, here are the five partitions of 4, together with their Ferrers diagrams:
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4 3+1 2+2 2+1+1 1+1+1+1

Here are the first few values of the partition function:

n 01112 |3|4]|5]| 6 7 8 9 (10| 11 | 12 | 13 14 15 16

pn) | 1123|5711 |15|22|30]| 42|56 | 77| 101 | 135 | 176 | 231

In slightly different language, p(n) is the number of partitions of n into nonempty parts.
It should be clear why we require the parts to be nonempty: without this requirement, we
could have an unlimited number of empty parts (e.g. 440 = 4+040 = 4+040+0 = etc.)
with the resulting number of ‘partitions’ being infinite, whcih we clearly want to avoid.

Refining our count, we have p(n) = >_}_, pr(n) where pi(n) is the number of parti-
tions of n into k& nonempty parts. Thus for example p3(8) = 5:

(6,1,1) (5,2,1) (4,3,1) (4,2,2) (3,3,2)

Rather than limiting the number of parts, we may choose to limit the size of each part.
For example there are exactly five partitions of 8 into nonempty parts of maximum size 3:
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(3,1,1,1,1,1) (3,2,1,1,1) (3,2,2,1) (3,3,1,1) (3,3,2)
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Note that the preceding list of Ferrers diagrams comes from the previous list, by reflection
across the —45° line through the upper left corner. This operation is called conjugation;
for example, the conjugate of the partition (6,1,1) is the partition (3,1,1,1,1,1). Note
that the partition (3,3,2) is conjugate to itself; it is self-conjugate. Evidently, conjuga-
tion establishes a one-to-one correspondence between partitions of n having k parts, and
partitions of n having largest part k. In each case, the number of partitions is pg(n).
Note that the number of partitions of n having parts of size < k is not pi(n), but rather
p1(n)+p2(n)+- - - +pr(n).

In summary, a partition of an integer n with k parts is a tuple A = (A1, A, ..., Ag)
of positive integers A\1 > Ao = --- > A\ > 1 satisfying \y+Ao+ -+ = n. If these

conditions are satisfied, we write A - n; and we call A1, Ao, ..., A\x the parts of the partition.

Theorem 1. The generating function for the partition function p(n) is
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A general term in this expansion has the form x™ +2r2+3rs+4rat where 1,79, 73,74, . ..
are non-negative integers. Now we collect terms. The coefficient of ™ in the expansion is

of course the number of tuples of non-negative integers (1,72, 73,74, ...) satisfying
(*) r1+2ro+3r3+4rg+ - = n.

Evidently every solution of (*) has only finitely many positive r;’s, beyond which all the
remaining r;’s must be zero. Moreover every solution of (*) corresponds to a partition of
n in which we have r; parts of size 1, ro parts of size 2, r3 parts of size 3, etc. So the num-

ber of solutions of (*) is exactly p(n), the number of partitions of n. This gives the result. []

Typical symbolic computation engines will not be able to store the infinite product
152 F directly. Instead, a finite product [;"; == may be used with m sufficiently
large. Indeed, the series expansion of the full generating function in all terms up to
degree m. So by taking m > n and reading coefficients of the power series expansion, we
may correctly compute p(0), p(1),p(2),...,p(n). The following Maple session evaluates the

values of p(n) given in our earlier table of values:
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Theorem 2. Fix a positive integer k.

(a) The generating function for pg(n), the number of partitions of n with k£ parts (or

largest part k) is i
x
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(b) The generating function for p;(n)+p2(n)+---+pk(n), the number of partitions
of n with at most k parts (or parts of size at most k) is
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Proof. We first prove (b). We may interpret p;(n)+p2(n)+---+pr(n) as the number of
partitions of n into parts of size at most k (since by conjugation, we know that this is the
same as the number of partitions of n into at most k parts). Now

o aen = (taete®+a’+ ) (e ot et ) xe o x (Thaf+a?P o).

A typical term in the expansion of this product has the form z71+2r2+37s++krk where

ri,T2,...,T are non-negative integers satisfying
(1) ri+2ro+3rs+ - - - +krp = n.

Again, every solution of (}) corresponds to a partition of n into parts of size at most &
(by taking 7 parts of size 1, ro parts of size 2, ..., ry parts of size k). So the number of
solutions of (1) is p1(n)+p2(n)+ - - - +pr(n), the number of partitions of n into parts. This
gives (b).

For (a), we have
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Previously we determined p3(8) = 5 by explicitly enumerating partitions of 8 with 3
parts (also partitions of 8 with largest part 3). Here is a Maple session in which p3(8) =5
can be read from the coefficient of 28 using Theorem 2(a):
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Note that we my recover Theorem 1 from Theorem 2(b) by letting k — 00. In the limit

we have the generating function limy_, o (1_33)(1_;2)“.(1_3616) =1L, 1 . The coeflicient
of 2™ in the series expansion of the infinite product is p;(n)+pa(n )+p3( )+ - =p(n).



