
Computations in p-adic Fields

Let p be a prime. Recall that the ring Zp of p-adic integers consists of all expressions of

the form

a0 + a1p + a2p
2 + a3p

3 + · · ·

where each ai ∈ {0, 1, 2, . . . , p−1}. Finite (i.e. terminating) sums of the form above give

all the non-negative integers (written in ‘reverse’ base p notation); and allowing infinite

sums, we obtain a much larger ring of numbers which includes all those rational numbers

which, in reduced form, have no p in the denominator. It is important to recognize that

the digits ai are just integers, not integers mod p. Also, the p-adic expansion (in which

a number is expressed in terms of ascending powers of p) is very different from the usual

base p representation (in terms of descending powers of p). For example we have

8
3 = 2.666666 . . . = 2 + 6

10 + 6
102 + 6

103 + 6
104 + · · · (decimal expansion);

8
3 = 2.313131 . . .︸ ︷︷ ︸

base 5

= 2 + 3
5 + 1

52 + 3
53 + 1

54 + · · · (base 5 expansion);

8
3 = 1 + 2·5 + 3·52 + 53 + 3·54 + · · · (5-adic expansion).

We will show, using the latter expansion as an example, how to obtain p-adic expansions

of certain numbers, including rational numbers.

Allowing finitely many terms with negative exponent gives the field Qp of p-adic

numbers; these are all expressions of the form

akp
k + ak+1p

k+1 + ak+2p
k+2 + ak+3p

k+3 + · · ·

where k ∈ Z and ai ∈ {0, 1, 2, . . . , p−1}. In fact, Qp is the field of quotients of Zp. It is an

extension of the ordinary rationals: Q ⊂ Qp.

Let us arbitrarily consider p = 5 and give some computational examples in Q5. For

simplicity I’ll begin with some 5-adic integers (so there will be no 5’s in the denominator).

An example is 8
3 . We wish to determine its 5-adic expansion

8
3 = a0 + a15 + a252 + a353 + · · · .

We can always find the coefficients ai ∈ {0, 1, 2, 3, 4} by brute force if necessary:
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(1) 8 = 3(a0 + a15 + a252 + a353 + · · ·).

Since each ai ∈ Z we can reduce modulo 5 to obtain a0 ≡ 1 mod 5, and the only possible

digit is a0 = 1. Substituting this into (1) and simplifying gives

(2) 1 = 3(a1 + a25 + a352 + a453 + · · ·).

This forces 3a1 ≡ 1 mod 5 and so the only possible digit is a1 = 2. Substituting this into

(2) and simplifying again leaves

(3) −1 = 3(a2 + a35 + a452 + a553 + · · ·).

The only digit satisfying 3a2 ≡ −1 mod 5 is a2 = 3. Substituting this into (3) and

simplifying again yields

(4) −2 = 3(a3 + a45 + a552 + a653 + · · ·).

The only digit satisfying 3a3 ≡ −2 mod 5 is a3 = 1. Substituting this into (4) and

simplifying gives

(5) −1 = 3(a4 + a55 + a652 + a753 + · · ·).

This is the same as (3) but with the subscripts shifted by 2, which means that our sequence

of digits has started to repeat. The digits are therefore 1, 2, 3, 1, 3, 1, 3, 1, 3, 1, . . . and so

8
3 = 1 + 2·5 + 3·52 + 53 + 3·54 + 55 + 3·56 + 57 + · · · .

We can verify this by collecting terms on the right hand side to obtain a geometric series:(
1+2·5

)
+
(
3·52+53

)
+
(
3·54+55

)
+
(
3·56+57

)
+ · · ·

= 11 + 200 + 200·52 + 200·54 + 200·56 + · · ·

= 11 + 200
1−25

= 11− 25
3

= 8
3 .

It is easy to obtain the 5-adic expansion for − 8
3 from that of 8

3 :

− 8
3 = 4 + 2·5 + 52 + 3·53 + 54 + 3·55 + 56 + 3·57 + · · ·
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as one can verify by adding the 5-adic expansions and watching all the terms cancel.

The partial sums of the 5-adic expansion of 8
3 are

1, 11, 86, 211, 2086, 5211, 52086, 130211, . . . .

This sequence converges 5-adically to 8
3 , i.e. these partial sums get closer and closer to 8

3

according to the 5-adic notion of distance, approaching 8
3 in the limit. Indeed the k-th

partial sum differs from 8
3 by a multiple of 5k which has size 5−k → 0 as k →∞. To find

the size of a nonzero rational number in Q5, first write it as 5k a
b where k, a, b ∈ Z, and a, b

are not divisible by 5; then the 5-adic norm is given by∣∣∣∣5k a
b

∣∣∣∣
5

= 5−k.

So for example, the distance between the fourth partial sum and 8
3 is∣∣∣∣211− 8

3

∣∣∣∣
5

=
∣∣∣∣ 625

3

∣∣∣∣
5

=
∣∣∣∣ 54

3

∣∣∣∣
5

= 5−4 = 1
625 .

Let us check our computations using Maple. We first load the padic package. The

command evalp gives the p-adic expansion, in the same way that evalf gives the decimal

expansion.
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As an example of a 5-adic number which is not a 5-adic integer, divide our previous example

by 25 to obtain

8
75 = 5−2 + 2·5−1 + 3 + 5 + 3·52 + 53 + 3·54 + 55 + · · · .

Check:

Most p-adic numbers have non-repeating expansions and so are irrational. As an

example, let us compute the 7-adic expansion of ±
√

2 ∈ Z7:

±
√

2 = b0 + b17 + b272 + b373 + b474 + · · · ;

2 =
(
b0 + b17 + b272 + b373 + b474 + · · ·

)2
= b20 + (2b0b1)7 + (2b0b2+b21)72 + (2b0b3+2b1b2)73 + · · · .

The only values of b0 ∈ {0, 1, 2, 3, 4, 5, 6} satisfying b20 ≡ 2 mod 7 are 3 and 4. Whichever

of these two choices we make, we can then uniquely solve for the remaining coefficients

bi. We thus obtain two possible values for ±
√

2 in Z7 as expected. It is meaningless to

distinguish which one is
√

2 and which one is −
√

2 since the ring Z7 is not ordered; more

correctly, we have simply the two roots of x2 = 2 in Z7. For now, let us arbitrarily choose

b0 = 3:

2 =
(
3 + b17 + b272 + b373 + b474 + · · ·

)2
= 9 + (6b1)7 + (6b2+b21)72 + (6b3+2b1b2)73 + · · · ;

−1 = 6b1 + (6b2+b21)7 + (6b3+2b1b2)72 + (6b4+2b1b3+b22)73 + · · · ;

The only digit b1 ∈ {0, 1, 2, . . . , 6} satisfying this mod 7 is b1 = 1 so

−1 = 6 + (6b2+1)7 + (6b3+2b2)72 + (6b4+2b3+b22)73 + · · · ;

−2 = (6b2) + (6b3+2b2)7 + (6b4+2b3+b22)72 + · · · .
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This gives b2 = 2. Continuing in this way, we can solve for one coefficient bi at a time to

obtain
√

2 = 3 + 7 + 2·72 + 6·73 + 74 + 2·75 + 76 + 2·77 + 4·78 + · · · .

The partial sums of this sequence are

3, 10, 108, 2166, 4567, 38181, 155830, 1802916, 24862120, · · ·

which gives successively better approximate solutions of x2 = 2 in Z7: the k-th approxi-

mation solves the equation x2 = 2 within 1
7k

in Q7. For example,the fourth approximation

2166 satisfies

∣∣∣∣21662 − 2
∣∣∣∣
7

=
∣∣∣∣4691554

∣∣∣∣
7

=
∣∣∣∣1954·74

∣∣∣∣
7

= 7−4 = 1
2401 .

This naive approach requires k iterations to obtain k digits of
√

2.

There is a much faster approach, for which k iterations will give 2k digits of
√

2:

Newton’s method. Recall (e.g. from Calculus I) that this method starts with an approxi-

mate root x0 of the equation f(x) = 0, as the starting point of a sequence of approximate

solutions x0, x1, x2, x3, . . . where each successive approximation is found from the previous

approximation by

xk+1 = xk −
f(xk)

f ′(xk)
.

This sequence may not converge, for a variety of reasons: maybe the equation f(x) = 0

has no solution, or maybe the first guess x0 was chosen poorly. But when it works, it

works fast , doubling the number of digits of accuracy at every iteration (much faster than

the naive approach which only adds one more digit of accuracy at every iteration). This

phenomenon of quadratic convergence works in Qp for the same reason that it works in R

(see any calculus textbook), although we omit the proof here.

Let’s illustrate Newton’s Method for approximating
√

2 with initial guess x0 = 3, the

leading term of our 7-adic expansion. We are looking for a root of f(x) = x2 − 2, where

f ′(x) = 2x so successive guesses are given by

xk+1 = xk −
x2
k − 2

2xk
= 1

2

(
xk + 2

xk

)
.
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This gives

x0 = 3,

x1 = 11
6 ,

x2 = 193
132 ,

x3 = 72097
50952 ,

x4 = 10390190017
7346972688 ,

x5 = 215912063945802350977
152672884556058511392 ,

x6 = 93236038714671382520186472510594280409857
65927835226115610973831953438649073659968 ,

x7 = 17385917830407401734168936857744523804462124059388058507474973971779744313674282497
12293700395033181689521014498791482446089623473412299565850544862957438332187009152 ,

etc. Here is a Maple session which completes these values:

This sequence converges to
√

2 in both R and Q7; and in both cases the convergence
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is quadratic. For example the decimal expansions of these approximations are given by

x0 = 3.00000000000000000000000000000000000000000000000000000000000000000000 . . .

x1 = 1.83333333333333333333333333333333333333333333333333333333333333333333 . . .

x2 = 1.46212121212121212121212121212121212121212121212121212121212121212121 . . .

x3 = 1.41499842989480295179777045062019155283403988067200502433663055424713 . . .

x4 = 1.41421378004719758392002341413903456721275346600281250426229977023701 . . .

x5 = 1.41421356237311180087113641686894154181626390642479100754009420259950 . . .

x6 = 1.41421356237309504880168872430891641385044991878415404215410685807296 . . .

x7 = 1.41421356237309504880168872420969807856967187537694807318016021587533 . . .

x8 = 1.41421356237309504880168872420969807856967187537694807317667973799073 . . .

etc. The point is that at every iteration, we obtain not just one more digits of accuracy;

rather, the number of digits of accuracy roughly doubles at every iteration. The sequence

x0, x1, x2, . . . is guaranteed to converge to
√

2 in R whenever the initial guess x0 is positive.

It will converge to the other root of f(x) = 0, i.e. −
√

2, if the inital guess x0 is chosen to

be negative. If we choose x0 = 0, then x1 and all subsequent terms are undefined.

Similar phenomena are observed in the 7-adic setting, where the expansions of the

same sequence 3, 11
6 , 193

132 , . . . are given by

x0 = 3

x1 = 3 + 7 + 72 + 73 + 74 + 75 + 76 + 77 + 78 + 79 + 710 + 711 + 712 + 713 + 714 + · · ·

x2 = 3 + 7 + 2·72 + 6·73 + 3·75 + 3·76 + 2·77 + 5·78 + 3·79 + 710 + 711 + 2·712 + 6·713 + · · ·

x3 = 3 + 7 + 2·72 + 6·73 + 74 + 2·75 + 76 + 2·77 + 3·78 + 5·79 + 2·710 + 5·711 + 3·712 + · · ·

x4 = 3 + 7 + 2·72 + 6·73 + 74 + 2·75 + 76 + 2·77 + 4·78 + 6·79 + 6·710 + 2·711 + 712 + · · ·

x5 = 3 + 7 + 2·72 + 6·73 + 74 + 2·75 + 76 + 2·77 + 4·78 + 6·79 + 6·710 + 2·711 + 712 + · · ·

etc. Note that once again, the number of digits of accuracy in our representation of
√

2

doubles with every iteration. The convergence to
√

2 is guaranteed for any initial guess x0

congruent to 3 mod 7; and for any initial guess x0 congruent to 4 mod 7, the resulting

sequence converges to −
√

2. For other values of x0, the sequence either fails to converge, or

becomes undefined after the first term. Typically, Newton’s Method may fail to converge

if the first guess is not close enough to the desired root. Also, our sequence 1, 11
6 , 193

132 , . . .

does not converge in Q5, and for similar reasons (x0 = 3 does not solve the congruence
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x2 − 2 ≡ 0 mod 5). All these expansions, both decimal and 7-adic, were computed using

Maple:

Now I should also disclose that Maple internally implements the required iterative procedure

and so it is able to display the 7-adic expansion of
√

2 with a direct command:

Once again, we can list as many digits as desired; and they agree with the digits we found

by explicit computation.
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