
Numbers and Polynomials (Handout January 20, 2012)

We are ready to define polynomials (these being rather like ‘numbers on steroids’) and

to establish some of the relevant basic terminology. First we should talk about numbers.

The plan here is for an informal presentation—this means that much of our terminology

will be explained using examples rather than actual definitions. The terminology is very

basic, and we present it at a fast pace, postponing details until later in the course. Please

read this through twice—once quickly, to get an overview; and a second time, to make sure

you have learned the main terminology. If anything is still unclear (such as notation from

set theory, etc.) then please ask about it.

There is no universal concept of what a number is. Rather, there are many different

number systems, each appropriate in its own context. So the term ‘number’ is context-

dependent, as it refers to an element of whatever number system we are considering at a

given moment. Among these the most familiar number systems are

the set of integers Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . . , };
the set of natural numbers N = {1, 2, 3, . . .};
the set of rational numbers Q =

{

a
b

: a, b ∈ Z, b 6= 0
}

;

the set of real numbers R; and

the set of complex numbers C = {a + bi : a, b ∈ R} where i =
√
−1; and

for each positive integer n, we have the set Zn = {0, 1, 2, . . . , n−1} of ‘integers

mod n’.

Every integer is either positive, negative, or zero; and zero itself is neither positive nor

negative. In this course, we will understand the natural numbers to be simply the positive

integers, as indicated above. (Warning: Some sources instead take the natural numbers

to be N = {0, 1, 2, 3, . . .}. This is merely a matter of convention, not anything to get hung

up on.) Although the most familiar number systems fit in a sequence under containment

as N ⊂ Z ⊂ Q ⊂ R ⊂ C, there are many other important number systems. Some fit in

between these; some contain C; and others bear little or no relation to any of the number

systems we have listed. We cannot strictly regard Zn as a subset of any of these number

systems, regardless of the similarity in symbols used, since its operations are very different;

for example 2 + 2 = 1 in Z3, although this is not true in any of the number systems N, Z,

Q, R or C.

The real number system R needs very little introduction. Two familiar ways to view

real numbers are
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(i) as numbers expressible in decimal form. These include rational numbers (such as
11

4
= 2.75, 5

3
= 1.6666666666... and − 8

19
= −0.4210526315...) but also irrational

numbers (such as
√

2 = 1.4142135623... and π = 3.1415926535...). An irrational

number is a real number that is not rational. Also

(ii) real numbers are thought of as corresponding to points on the ‘real number line’.

Both of these interpretations lend some useful intuition to the study of real numbers;

but both interpretations are of limited value. Regarding (i), virtually none of the main

properties of real numbers are easy consequences of the decimal expression. (Even to prove

the distributive law a(b + c) = ab + ac using decimal expansions would be an incredibly

difficult task, to say nothing of the deeper properties such as the basic theorems of calculus.)

And regarding (ii), it must be said that points on a physical line are not strictly in one-to-

one correspondence with real numbers. For example, given any two distinct real numbers

x and y, one of them is less than the other (i.e. either x < y or y < x). However, points

on an ‘actual’ line in physical space are not totally ordered in this way: Given two distinct

points P and Q on a horizontal physical line, we imagine that one of them is always to the

left of the other; but this is only approximately true—when two points are close enough

together. (Within about 10−33cm of each other, points are no longer even approximately

ordered from left to right.) Physical space is more bizarre than is generally realized by

most people. Moreover, the real numbers (an abstract mathematical concept) are also

much more bizarre than most people realize. To top it off, the bizarre features of physical

quantities (position, time, etc.) are different from the bizarre features of the real number

system. So then what exactly do we mean by a real number? That’s a story for another

day—for now, just try to make do with (i) and (ii).

Remarkably, everyone has indicated (in class) some previous experience with the com-

plex numbers. Nevertheless, we shall review some of their basic properties and applications.

We will soon learn to distinguish number systems based on their properties. Most of

the number systems listed above (Z, Q, R, C and Zn) are examples of rings. I’d rather

wait until later before formally defining a ring. However, let me point out that a ring has

two basic operations of addition and multiplication; it has an identity element for addition

(called 0) and an identity element for multiplication (called 1); there is also an operation

of subtraction (the inverse of addition); and various familiar commutative, associative and

distributive properties are satisfied. The number system N is not a ring because subtraction

is not defined in N (for example, for the two elements 3, 11 ∈ N, there is no element of N

of the form 3 − 11).

Some rings have non-commutative multiplication; an example is the set of all 2 ×
2 matrices with real entries, where AB 6= BA for most choices of matrices A and B.

(However, in order to qualify as a ring, addition is required to be commutative, i.e. x +

y = y + x for all ring elements x, y.) We do not foresee any use for non commutative

multiplication in this course; so all our rings will be commutative.
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If there is also an operation of division (the inverse of multiplication), then the number

system is called a field. More precisely, in a field, we divide any element by any nonzero

element, and get an element of the field. Thus Q, R and C are fields, but N and Z are

not. (Try to divide 3 by 5 in Z; this does not give an element of Z, so Z is not a field.)

Note that every field is a ring; but not every ring is a field. Further examples of fields

include Z2, Z3, Z5, Z7, . . . . But the rings Z4, Z6, Z8, Z9, . . . are not fields; for example,

we cannot divide 3 by 2 in Z4. As we will explain later, Zp is a field whenever p is prime.

We prefer the notation Fp = {0, 1, 2, . . . , p−1} in this case (where ‘F’ stands for ‘field’).

Fields are very important when studying linear algebra. This is because in trying to

solve linear equations, one of the fundamental steps involved (in Gaussian elimination) is

the process of division. For this reason, a course in linear algebra starts by designating

some field F (such as Q, R, C or F2 = {0, 1}) as the field of scalars; and then all vectors

and matrices have entries chosen from F .

Now for polynomials. As examples, consider f(x) = 1 + 4x − 7x3 and g(x) = 1.8x +

x2 − 7πx9 + 7.62x11. These are polynomials in x with real coefficients; accordingly, we

write f(x), g(x) ∈ R[x]. In fact since f(x) has integer coefficients, it is correct to say that

f(x) ∈ Z[x]. We say that

the coefficient of x3 in 1 + 4x − 7x3 is −7;

the coefficient of x2 (or of x4) in 1 + 4x − 7x3 is 0;

the coefficient of x2 in (1+x)3 is 3. (To see this, first expand (1+x)3 = 1+3x+3x2+x3;

the coefficient of x0 = 1 (i.e. the constant term) in 5 − 8x − 9x2 is 5.

More generally, if R is any commutative ring (such as Z, Q, R, C or Zn), then a

polynomial in x with coefficients in R is defined to be an expression of the form

f(x) = a0 + a1x + a2x
2 + · · · + anxn

where a0, a1, . . . , an ∈ R. We denote by R[x] the set of all such polynomials. It’s a ring

(the polynomial ring in x with coefficients in R). We say that the polynomial f(x), as

shown, has degree n (assuming an 6= 0; otherwise, its degree would actually be less than

n.) It’s better to say that the degree of f(x) is the largest integer d such that xd has

nonzero coefficient in f(x). We write deg (f(x)) = d in this case. It is not too hard to see

that for two polynomials f(x) and g(x), the product has degree

(*) deg
(

f(x)g(x)
)

= deg (f(x)) + deg (g(x)).

Note that 2 + 7x has degree 1; and the constant polynomial 5 has degree 0. What is the

degree of the constant polynomial 0 (i.e. the zero polynomial)? Either it is undefined (as

some sources say), or we define it as deg (0) = −∞. This convention is chosen so that the

rule (*) works (try it!).

Why did we define a polynomial as an expression, rather than as a function?
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Let me ask you: what is a spoon? Most people would define a spoon with reference

to its usual function (of eating soups, etc.). I could however give examples of spoons that

have other purposes: spoons as percussion instruments, measuring spoons, and decorative

souvenir spoons (like your grandmother used to collect) that arguably have no practical

value other than to look interesting and remind us of some of the places we have traveled!

Likewise a polynomial may serve in many ways: sometimes as a function, sometimes not,

and in many different roles; and sometimes the focus is not on any particular application—

the polynomial just sits there and looks pretty. (OK, beauty is in the eye of the beholder.)

Let’s point out that a polynomial can have any finite number of terms, but only a

finite number of terms. An expression like

sin x = x − x3

6
+

x5

120
− x7

5040
+

x9

362880
− x11

39916800
+ · · ·

is not a polynomial; it is a power series. The set of all power series in x, with coefficients

in R, is denoted R[[x]]; thus, for example, sinx ∈ Q[[x]]. We have R[x] ⊂ R[[x]]. Like

polynomials, power series have many applications (not always as functions). For example

g(x) = 1 + x + 2x2 + 6x3 + 24x4 + 120x5 + 720x6 + 5040x7 + · · · ∈ R[[x]] and

h(x) = 1 + x + (2x)2 + (3x)3 + (4x)4 + (5x5) + (6x)6 + (7x)7 + · · · ∈ R[[x]]

are two different power series, even though they both give the same very trivial function.

As functions R → R, we have g(0) = 1 and h(0) = 1; and g(a) and h(a) are both undefined

for any nonzero real number a since the series only converge at 0. The reason that g(x) and

h(x) are different power series is that they have different coefficients. To emphasize when

we are talking about a power series as opposed to a function, many mathematicians say

that g(x) and h(x) are formal power series. But this terminology suggests that formal

power series are a special kind of power series, which is rather backwards from the truth:

in fact only a very special kind of power series can be interpreted as any kind of function;

since to represent a function, we would require convergence of the series. Our formal

viewpoint means that we are usually not concerned with convergence or with functions;

and this makes life easier.

Adding, or multiplying, two polynomials gives a polynomial. The same can be said

for power series. In fact, both R[x] and R[[x]] are rings.
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The variable x is known as an indeterminate. It is merely a symbol, not a number:

its purpose in life (like a souvenir spoon) is just to sit there and look pretty. Actually, it does

a little more: without it, the polynomial is just a list of coefficients, and f(x) = 1+4x−7x3

would be written simply as f = (1, 4, 0,−7, 0, 0, 0, . . .) which would be fine, except that

the rule for multiplying polynomials:

(1, 4, 0,−7, 0, 0, 0, . . .)(2,−3, 0, 0, 0, . . .) = (2, 5,−12,−14, 21, 0, 0, 0, . . .)

is more easily remembered and implemented when written in the form

(1 + 4x − 7x3)(2 − 3x) = 2 + 5x − 12x2 − 14x3 + 21x4.

The choice of letter x for the indeterminate is not so important; we could just as well write

f(t) = 1+4t−7t3 ∈ Z[t] or f(r) = 1+4r−7r3 ∈ Z[r]. But for now, we are not considering

polynomials in more than one indeterminate; expressions like

h(x, y) = 4 + 2x − 3y + 7x2 − 8xy − 10y2 ∈ Z[x, y]

will come up somewhat later in our course.

I have already used the term term. Please note that an expression like U +V +W has

three terms. An expression like uvw has only one term; it has three factors. When several

quantities are added, they are called terms. When several quantities are multiplied, they

are called factors. An expression like 5x3 is a monomial. An expression like 4x − 7x5 is

a binomial. An expression like 1 + 4x− 7x3 is a trinomial. Note that the prefix (mono,

bi, tri) in each case indicates the number of terms. The prefix ‘poly’ means ‘many’ or

‘several’; hence a polynomial has any finite number of terms.
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