
More Factorization in Rings

Here we continue our study of factorization in rings of the form

R = Z[
√

d] = {a + b
√

d : a, b ∈ Z}.

Here d is a fixed integer which is not a perfect square (so that
√

d is irrational). For any

r = a + b
√

d ∈ R, we define the conjugate of r as

r = a − b
√

d ∈ R.

(If d < 0 then r is in fact the usual complex conjugate of r; but if d > 0 then all elements

of R are real so this notion of conjugation is different than complex conjugation. To avoid

confusion, the expression r we have defined may be called the algebraic conjugate of r.)

Also define the norm of r as

N(r) = rr = (a + b
√

d)(a − b
√

d) = a2 − db2 ∈ Z.

Proposition. For all x, y ∈ R we have

(a) x + y = x + y;

(b) xy = x·y;

(c) N(xy) = N(x)N(y).

Proof. Write x = a + b
√

d and y = u + b
√

d where a, b, u, v ∈ Z. Then

x + y = (a + b
√

d) + (u + v
√

d) = (a + u) + (b + v)
√

d

= (a + u) − (b + v)
√

d = (a − b
√

d) + (u − v
√

d) = x + y;

xy = (a + b
√

d)(u + v
√

d) = (au + dbv) + (av + bu)
√

d

= (au + dbv) − (av + bu)
√

d = (a − b
√

d)(u − v
√

d) = x·y.

This proves (a) and (b). Now the proof of (c) is easy:

N(xy) = xy·xy = xy·x·y = xx·yy = N(x)N(y).

(As an exercise, check that N(x + y) is not the same as N(x) + N(y).) The norm func-

tion is very useful in the study of factorization in R: for classifying units, for deciding

irreducibility, and for factorization. We proceed with some examples of this.

Determining Units

We first use the norm to help classify units. Recall that by definition, u ∈ R is a unit iff

there exists v ∈ R such that uv = vu = 1.
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Theorem. Let x ∈ R = Z[
√

d]. Then x is a unit iff N(x) = ±1.

Proof. First suppose that x ∈ R is a unit, so that xy = 1 for some y ∈ R; then N(x)N(y) =

N(xy) = N(1) = 1. Since N(x) and N(y) are integers, this forces N(x) = N(y) = ±1.

Conversely, suppose that N(x) = ±1; then xx = ±1 so that x(±x) = 1 and so x is a

unit.

The set of units in R is denoted R×. As a first example, let us find the units of

Z[
√
−5]: An element u = a + b

√
−5 is a unit iff N(u) = a2 + 5b2 = ±1. Clearly the only

integer solutions of this relation are a ∈ {1,−1} and b = 0; thus the only units of Z[
√
−5]

are 1 and −1. We therefore have Z[
√
−5] = {1,−1}.

The ring Z[
√

5] is interesting: here the units u = a + b
√

5 correspond to solutions

of a2 − 5b2 = ±1. This equation has infinitely many integer solutions! First note that

(a, b) = (2, 1) is a solution, so 2 +
√

5 is a unit with (2 +
√

5)(−2 +
√

5) = 1. Also

±(2 +
√

5)k is a unit for every integer k, since

[

±(2 +
√

5)k
][

±(−2 +
√

5)k
]

= 1.

This gives infinitely many units in Z[
√

5]:

±1, ±2 ±
√

5, 9 ± 4
√

5, ±38 ± 17
√

5, ±161± 72
√

5, 682 ± 305
√

5, . . . .

With a little more work, it may be shown that these are the only units in Z[
√

5], so that

in fact

Z[
√

5]× = {±(2 +
√

5)k : k ∈ Z}.

However, to justify this would require more technical work than we care to indulge in at

this early stage in our investigation of rings.

A more difficult case would be to find the units of Z[
√

61], for which we must solve

a2 − 61b2 = 1. Again, there are infinitely many solutions; but aside from the trivial

solutions (a, b) = (±1, 0), it will be very difficult to find any solutions by inspection. The

units of Z[
√

61] are in fact

Z[
√

61]× = {±(29718 + 3805
√

61)k : k ∈ Z}
= {±1, ±29718 ± 3805

√
61, ±1766319049± 226153980

√
61, . . .}.

The task of determining the units of Z[
√

d] is equivalent to the problem of finding the

integer solutions of a2 − db2 = 1. The latter equation is known as Pell’s equation; and an
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algorithm for its solution, using continued fractions, is a standard topic in number theory

courses, including our Math 4550. We will not digress further on this topic here.

Factoring and Verifying Irreducibility

Consider the problem of factoring 369 into irreducible factors in R = Z[
√
−5]. We may

begin by factoring 369 = 3·3·41. The factor 3 is irreducible, which we verify as follows:

Suppose 3 = xy where x, y ∈ R; then N(x)N(y) = N(3) = 9. However N(x) and N(y)

are non-negative integers (recall that N(a + b
√
−5) = a2 + 5b2) so the only possibilities

for the factorization N(x)N(y) = 9 are 9 × 1 = 9, 3 × 3 = 9 or 1 × 9 = 9. If N(x) = 1

then x is a unit; and if N(y) = 1 then y is a unit. The only other possibility is that

N(x) = N(y) = 3; but this is impossible since a2 + 5b2 = 3 has no integer solutions. Thus

3 is irreducible in R as claimed. However, factoring 41 is a different story: if 41 = xy then

N(x)N(y) = N(41) = 412 which has a nontrivial solution with N(x) = N(y) = 41. This

requires us to solve a2 + 5b2 = 41, and we quickly find solutions (a, b) = (±6,±1). This

yields the factorization

369 = 3·3·(6 +
√
−5)(6 −

√
−5).

All four factors here are irreducible in Z[
√
−5]; for example if 6 +

√
−5 = xy then

N(x)N(y) = N(6 +
√
−5) = 41 so either N(x) = 1 or N(y) = 1, whence either x or

y is a unit.

Other factorizations of 41 are available in Z[
√
−5]; for example,

369 = (2 +
√
−5)(2 −

√
−5)(6 +

√
−5)(6 −

√
−5).

We verify the irreducibility of all four factors here, using the norm map as we did above

for 3 and 6±
√
−5. This factorization is essentially different from the factorization of 369

given above (i.e. the irreducible factors 2 ±
√
−5 are not associates of 3). Here we have

further confirmation that the ring Z[
√
−5] does not have unique factorization. (We have

already encountered this when factoring 6 = 2·3 = (1 +
√
−5)(1 −

√
−5).)
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