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“Space is big. Really big. You just won’t believe how vastly hugely mind-
bogglingly big it is. I mean, you may think it’s a long way down the road
to the chemist, but that’s just peanuts to space.”

—Douglas Adams, The Hitchhiker’s Guide to the Galazy.

“I believe there are 15,747,724,136,275,002,577,605,653,961,181,555,468,044,
717,914,527,116,709,366,231,425,076,185,631,031,296 protons in the universe
and the same number of electrons.”

—Sir Arthur Eddington, The Nature of the Physical World, 1928.

Big Numbers

Let’s warm up by mentioning some large numbers. For starters we have Eddington’s
number Ngqq ~ 1.5x10™ given above. On mostly philosophical grounds, Eddington
proposed this as the number of protons (and electrons) in the universe. (No, he didn’t claim
to have counted them all.) We immediately face the issue: for numbers of this magnitude,
can the exact value ever really matter? It is quite conceivable that the observable properties

of the universe would remain pretty much the same with a slightly larger number
Npaa+118=15747724136275002577605653961181555468044717914527116709366231425076185631031414

of protons instead of Ngqq protons.

On the other hand, exact values are sometimes important. For example if a large
number is a password for my preferred wireless internet connection, then without the exact
sequence of digits, my laptop won’t be able to access the internet (even approximately)!
More generally for our interest, numbers (as sequences of digits or bits) often represent
some encoded information, rather than counting any particular set of objects. And the
exact sequence of digits (or bits) is often vitally important.

Current estimates for the total number of elementary particles in the universe (protons,
neutrons, electrons, muons, neutrinos, etc.) range from 1072 to 1087, Let’s take this number
to be

108°=100000000000000000000000000000000000000000000000000000000000000000000000000000000.



This number is peanuts next to the kind of numbers we will routinely consider. Let’s move

up to a googol:

1 followed by 100 zeroes
— 10100

1 googol

10000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000.

We're still just getting started! Consider next the googolplex:

1 googolplex = 101" = 1 followed by a googol zeroes

= 100000000000000000000000000000000000000000000000000000000. . .

This number is so large, we cannot possibly print out all its decimal digits. Even if every
electron in the universe were a sheet of paper, there would not be enough paper in the
universe to print out this number in decimal notation!

But we are about to encounter numbers much bigger even than this.

Modular Exponentiation

Let xz, m and n be positive integers (typically many digits long). A practical concern in

implementing many cryptographic protocols is the computation of

2™ mod n,

by which we mean finding the unique integer in the range {0,1,2,...,n—1} congruent to
2™ modulo n (i.e. the remainder when z™ is divided by n). A first observation is that if
x and m are hundreds of digits long (as is typically the case in our intended applications),
it is impossible to first evaluate ™ and then reduce modulo n. This is because ™ has
googols of digits! No physical computer has either the time or space resources to compute
this number. Even if a computer could imagine this number, there is no way it could
print it out! Even if every elementary particle in the universe could serve as a sheet of
paper, it would take a million million million million million million million million of our
universes to print out just the first googol digits of ™. And if x and m are 200 digits
each, the number of digits in ™ wvastly exceeds a googol. Moreover the computation of ™
would require an execution time vastly exceeding the lifetime of the universe, even with
the fastest computer that could theoretically be built. This is why a MAPLE command
like



> x:=1056193232365219425156374740912659610257124654981250;
x = 1056193232365219425156374740912659610257124654981250
> m:=435724089518651052301657460126517160147234615623298571;
m =435724089518651052301657460126517160147234615623298571
> m=10571561236510256015236521765210416512986531236;
n=10571561236510256015236521765210416512986531236

> x“mmod n;

Error, numeric exception: overflow

>

is doomed to fail (the computer indicates a numeric overflow).

On the other hand, if n is only 200 digits long, then ™ mod n cannot have more
than 200 digits; and it is possible to compute this value very easily! The MAPLE syntax
for this computation is as follows:

> x&*m mod n;
1895662058624958629103578893286554620310502360

>

How does MAPLE accomplish such a prodigious calculation? We’ll illustrate with a smaller
example to get the idea: consider

1624377 mod 622.

We first compute the binary expansion of 77 using repeated division by 2:

2|77
2|38r1
211910
2] 911
2] 4r1
2] 210
2 110

Or1l

so that the decimal number 77 is written in binary as 1001101 (notice that we reverse the
list of remainders). So

77 = 1x20 £ 0x2% + 0x2% + 1x23 + 1x2%2 + 0x2' +1x2°
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or simply
T7T=64+8+4+1.

Now start with = 16243 = 71 mod 622 and square six times modulo n (six being one
less than seven, the bit-length of 1001101):

=71 mod 622

22 =65
zt =493
2% = 469
z'% = 395
232 =525
254 =79

Now refer to the 1’s in the binary expansion of 77, and multiply together the corresponding
powers of  modulo n, thus:

20418 = 79% 469 = 353
20418+4 = 353%493 = 491

277 = 048+l = 491 %71 = 29 mod 622

We refer to this algorithm, using the binary representation of m in the computation of

™ mod n, as binary exponentiation.

x

What if x, m and n are each about 200 digits long? Then the binary representation
of m has about 670 bits, so we must perform 670 squaring operations (modulo n). Each
one generates in a 400-digit number, which (after reduction mod n) results in a 200-digit
number. If half the bits in the binary representation of m are 1’s, then we need to perform
another 335 multiplications mod n, each time saving the computed power as a 200-digit
number. Altogether we have about 1000 multiplication operations to perform, each of
which might take a microsecond to perform; and we have our final answer for ™ mod n
in about a millisecond. I still find it impressive that such a computation is possible!

But other methods are sometimes available, and sometimes even faster.

Euler’s Formula

For any positive integer n, we define ¢(n) to be the number of integers in the range
1,2,3,...,n which are relatively prime to n, i.e.

o(n)=|{k€Z : 1<k <n, ged(k,n) =1}|.
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This is known as Fuler’s totient function. To compute ¢(n) for small values of n, we may
list the numbers from 1 to n, and then cross out those having a factor bigger than 1 in
common with n. Thus for example ¢(12) = 4 since four numbers remain in the list

XX K s XKoo X ), 1, %

In particular it is easy to see that ¢(p) = p — 1 whenever p is prime. More generally, if one

1

knows the prime factorization of n, then the value of ¢(n) is found directly as follows: if

71,72

n =DpP1 P pZ’“

where p1,ps,...,pr are the distinct prime divisors of n, and if all the exponents r; > 1,
then we have

p(n) =n(l—L)(1-L)... (1- L)
=P (1 — 1) X pp (e — 1) x - x (i — 1),

Thus, for example,

Pp(12) = (2> x3) =12(1-3)(1-3)=12(1-3)(1-3)=12x s x 2 =4.

Theorem (Euler). If x and n are relatively prime positive integers, then

2% =1 mod n.

We will prove this result in a later section; but first observe that this gives Fermat’s Little
Theorem in the special case when n is prime.

Example. Find the last two digits of 4567123,

Solution. We are really asking for the value of 456723 mod 100. Observe that
ged(4567,100) =1 and  ¢(100) = 100(1 — ) (1 —

So by Euler’s Theorem,
4567%° = 6720 = 1 mod 100.

Now
456712 = 6712 = 67374013 = (67%0)% x 67° =1 x 67 = 67° = 63 mod 100.
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The last computation follows directly using a calculator: 673 = 300763. If the numbers in
question were larger, we might have resorted at this point to binary exponentiation; but
the numbers are much smaller than in the original problem, so our use of Euler’s Theorem
has significantly reduced the computational effort required.

The preceding example illustrates an alternative approach to evaluating " mod n,
which applies in many important cases: If ged(z,n) = 1, we may first simplify the problem
by reducing m modulo ¢(n). (We also reduce x modulo n in all cases. Note the different
modulus here! i.e. ¢(n) for the exponent, versus n for the base.)

Solving for z

Now consider a variant of the preceding problems, one that typically arises when consid-
ering how to break encrypted messages. We are given integers m, n and a, and we are
required to solve for x in the congruence relation ™ = a mod n. For example, we ask:
Find an integer x such that

22108163 = 3908718 mod 130355971.

In principle one might try all z-values in the range 0,1,2,...,130355970 to see which ones
satisfy this condition; but that is likely to require far too much execution time. Certainly
if n were replaced by a much larger number, say a 200-digit number, this approach would
be out of the question.

To get an idea of how to proceed, consider the analogous problem over R. Here we
would be asked to solve the equation

22108163 — 3908718

for z € R. You'll recognize that this requires us to take 9108163*" roots of both sides:
(£9108163)1/9108163 _ 39(g71g1/9108163

r =z ~ 1.000001645

This cannot be the answer in the integers modulo 130355971; however, the idea is a good
one. Starting with
29108163 = 3208718 mod 130355971

the problem is essentially one of raising both sides to the k** power, where k is the inverse
of 9108163 mod ¢(130355971); remember (from the previous section) that the exponent
is defined modulo ¢(130355971). In order to simplify computations, let’s use MAPLE to
do all this:



>  with(numtheory):
Warning, the protected name order has been redefined and unprotected

> n:=130355971:

> phi(n);
130096312

> m:=9108163:
> k:=1/m mod phi(n);

k=193804051
> x:=3208718& "k mod n;

x =98725341
Check that this is in fact a solution:
> x&*m mod n;

3208718

Good!

Note that if n has 200 or more decimal digits, we will be unable to factor n, and hence
unable to compute ¢(n) (our formula for ¢(n) requires knowing the factorization of n). In
this case our method will not work. Is there a way to solve for x in this case? Nobody
knows. Likely not! Or if there is, this would undermine the security of some of the most
popular public key cryptosystems in use today (details about this in the next handout).

Solving for m

Here is another variation on the theme above. This is another question that a cryptanalyst
(code-breaker) might face. We are given integers x, n and a, and we are required to solve
for m in the relation ™ = a mod n. For example, we ask: Find an integer m such that

542276103™ = 478354870 mod 1651057907.

Here at least you can check easily that n = 1651057907 is prime. (Recall that although
factorization is hard, checking to see if a number is prime can be done efficiently, even for
large numbers having thousands of digits.) But this doesn’t help much. One idea is to try
all values of m =0,1,2,... etc. Some MAPLE code for this approach is shown:

> x:=542276103;

x =542276103
> n:=1651057907;

» = 1651057907
We check that n is prime:
> ifactor(n);

(1651057907)
> m:=0;
m =0
> while (x&”m mod n)<>478354870 do
> m:=m+1:
> od:



Given enough time (hours maybe?) the last loop will eventually terminate and then we
can print out the smallest value of m that solves the required congruence. However I
didn’t have the patience to wait for an answer; my screen showed the hourglass symbol
while MAPLE chugged away for several minutes looking for a solution. Of this much I will
assure you: that there is a solution. There are more efficient ways to compute m than the
‘while’ loop I have shown; but no known method works for really large values of x, n and
a (i.e. hundreds of digits long).

For comparison, consider the analogous problem over R: here we are asked to find
m € R such that

542276103™ = 478354870.

Taking the logarithm of both sides to base 542276103, this says simply that
m = 10g549976103(478354870) ~ 0.9937635803 .

Unlike the previous section where we solved for x (essentially by taking appropriate powers
of both sides), this situation offers no suggestion for how to proceed in solving the original
congruence modulo n. However it does offer an appropriate name for our problem: the
value of m is called the discrete logarithm of 478354870 to base 542276103. It is, after
all, the power to which 542276103 must be raised (modulo n) to give 478354870. The
computation of discrete logarithms (of large numbers) is generally believed to be a very
hard problem, in fact of the same difficulty as the factorization of large integers.

Summary
We consider four (typically large) non-negative integers z, m, a and n related by

2™ = a mod n.

If we are asked to solve for a € {0,1,2,3,...,n—1} given the other quantities (the problem
of modular exponentiation) then in general the method of binary exponentiation may be
used: work out the binary representation of m, repeatedly square x mod n, and multiply
the required powers of x together mod n to obtain the result. In special cases, however,
the problem is significantly reduced by observing several observations. We may in every
case first reduce the value of z mod n. If ged(x,n) = 1 (as we check by Euclid’s Algorithm)
and ¢(n) is known or can be determined from the prime factorization of n, then we may
further reduce m mod ¢(n). This observation is of little value for large composite values
of n whose factorization is not known, since in this case we don’t know how to determine
6(n).

If we are asked to solve for z given m, a and n, and if ¢(n) is known (or computable,
say, from the prime factorization of n), then we should first check whether ged(m, ¢p(n)) =
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1. If so then there exists a positive integer k such that km = 1 mod ¢(n). (The value
of k may be computed by the Extended Euclidean Algorithm.) Raising both sides to the

k mod n.

power k yields the solution =z = a

If we are asked to solve for m given x, a and n, then we are faced with the discrete
logarithm problem. If n is small enough, we follow the naive approach of trying all possible
values of z € {0,1,2,...,n—1} until we find a solution (or all solutions, if required). Some
more efficient algorithms are known, but no practical solution is known in general for large
values of n. The difficulty of solving the discrete logarithm problem for large integers
appears to be comparable to the problem of integer factorization, which is also seemingly
intractable.

We actually take n to be a fixed positive integer throughout. (There is neither any

challenge nor any interest in solving for n given the other quantities x, m and a.)

HW#3 Due Fri Nov 21, 2008

Instructions: Let w be your W-number. (If your number is W02912077 then you should
take w = 2912077 since, by our definition, the leading digit 0 doesn’t affect the value of
w.)

In Question 1 you should work by hand, with the help of a claculator, and show your work.
You may use MAPLE to check your answers. In Questions 2, 3 and 4 you may freely
use MAPLE to perform any computations necessary, and check your answers whenever
possible. And be careful in copying the large integers from this assignment!

1. Find the last two digits of 1234567*. (Work by hand.)

2. Find the remainder when w!7762091 i5 divided by 123456789. (Use MAPLE.)
3. Find an integer m satisfying 4444™ = w mod 16187. (Use MAPLE.)

4. Find an integer = such that 234159 =w mod 863116403. (Use MAPLE.)

5. Find an integer = such that x?7'%28! =4 mod 130024553. (Use MAPLE.)



