
Knots

(Handout April 25, 2012)

Adjoints

Let A be an n×n matrix. The (i, j)-minor of A is the determinant of the (n−1)× (n−1)

matrix obtained by deleting the i-th row and j-th column of A. The (i, j)-cofactor of A

equals (−1)i+j times the (i, j)-minor of A. The matrix of cofactors of A is the n×n matrix

adj(A) whose (i, j)-entry is the (i, j)-cofactor of A. The adjoint of A, denoted adj(A), is

the transpose of the matrix of cofactors of A. For example, you may check that the adjoint

of

A =





1 3 0
2 −1 5

−2 3 1





is given by

adj(A) =





−16 −3 15
−12 1 −5

4 −9 −7



 .

Adjoints are useful because of the fact that

A · adj(A) = (det A)I = adj(A) · A.

From this it follows that if det(A) 6= 0, then

A−1 =
1

detA
adj(A).

In the example above, we obtain det(A) = −52 and so

A−1 = −
1

52





−16 −3 15
−12 1 −5

4 −9 −7



 .

Knots

Informally, a knot is a closed loop of string. You can make a knot from any piece of string

by connecting its two ends together, thereby making it ‘closed’. (This is easily done with a

cord as demonstrated in class.) The simplest knot is the unknot, obtained by connecting

two ends of the string together without first tangling the string. More complicated knots
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are formed by tangling the string before connecting its ends together. Two knots are

considered the same if one can be transformed to the other by manipulating the string but

without breaking apart or disconnecting either knot.

We cannot include a real knot in these notes, since a knot is 3-dimensional. However,

we can show a 2-dimensional representation of a knot, called a knot diagram. Here are

some examples of knot diagrams:

For example, K1 represents the unknot. Diagrams K2 and K3 represent the left-handed and

right-handed trefoil knots. We say that K2 and K3 are mirror images, for obvious reasons.

At each crossing point of a knot diagram, we have been careful to show (by a break in

the sketch for the lower portion of string) which part of the string passes underneath the

other.

Note that two different knot diagrams can possibly represent the same knot. For

example, knot diagrams K2 and K4 represent the same knot. Two knot diagrams K,K ′

are equivalent if they represent the same knot; in this case we write K ∼ K ′. Observe

that ‘∼’ is an equivalence relation on the set of all possible knot diagrams. Among the

James Waddell Alexander II
1888–1971

diagrams above, we have K4 ∼ K2 , and K5 ∼ K1. These

equivalences are easily found using your piece of string. You

may try to convince yourself (using your piece of string) that

K1, K2, K3 and K6 are inequivalent (in which case the di-

agrams shown represent four equivalence classes of knots).

However, this is not possible by näıve manipulation of knots.

While simple manipulation of string shows that (for exam-

ple) K5 ∼ K1, it is not possible to show K2 6∼ K1 in this way.

After all, how do we really know we aren’t just too dumb to

find the right manipulation? Couldn’t someone else come

along and find a clever way of manipulating K2 into K1 or

K6? This cannot be done, as J.W. Alexander showed in

1928.
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To each knot diagram K, Alexander associated a polynomial AK(x) ∈ Z[x] which is

an invariant of K in the sense AK′ (x) = AK(x) whenever K ′ ∼ K. We will compute the

Alexander polynomials of the knots above to obtain

AK1
(x) = 1, AK4

(x) = 1 − x + x2,

AK2
(x) = 1 − x + x2, AK5

(x) = 1,

AK3
(x) = 1 − x + x2, AK6

(x) = 1 − x + x2 − x3 + x4.

From this it will follow that K6 is not equivalent to any of the other knot diagrams above.

Unfortunately, Alexander polynomials are unable to distinguish between mirror images.

It is true that K2 6∼ K3 (this was proved by M. Dehn in 1914), but to show this requires

something more than Alexander polynomials.

Before describing how to compute Alexander polynomials, we mention that knots (and

their associated polynomials) have immense significance in theoretical physics. As long ago

William Thomson (Lord Kelvin)
1824–1907

Peter Guthrie Tait
1831–1901

Vaughan Frederick Randall Jones
1952–

as the 19th century, this was suspected, when William Thomson (better known as Lord

Kelvin) conjectured that chemical properties of the elements could be explained by viewing

atoms as knots in ether. This motivated P.G. Tait to begin a systematic classification of

knots in 1877. Although Kelvin’s view did not stand the test of time, modern theoretical

physics (especially topological quantum field theory) is strongly related to the theory of

knots and their associated polynomials, including Alexander and Jones polynomials. In

1990, V. Jones received the Fields Medal (the highest possible award in mathematics)

for his recent work which led to relationships between knot theory, quantum statistical

mechanics, quantum field theory, and the prediction of DNA configurations in certain

biological interactions.

Computing Alexander Polynomials

We must assume that at most two portions of the string cross at any crossing point of a

knot diagram; thus
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is allowed; is not allowed.

An arc of a knot diagram is a segment with two endpoints, which is drawn continuously

without lifting the pencil. For example, K2 and K3 each have three arcs (as well as three

crossing points). K4 has four arcs (and four crossing points). Both K5 and K6 have five

arcs (and five crossing points). A careful reading of the definition shows that K1 has no

arcs (and no crossing points).

Proposition 1. Any knot diagram has the same number of arcs as crossing points.

Proof. Let K be any knot diagram, and let N be the number of endpoints of arcs in K.

Clearly N = 2 × (number of arcs) since by definition, each arc has two endpoints. Also,

exactly 2 endpoints abut at each crossing point (according to the restriction at the begin-

ning of this section). Therefore, N = 2× (number of crossing points). Equating these two

expressions for N and canceling 2’s gives the required result.

The following is an algorithm for computing the Alexander polynomial of any given

knot diagram K.

Step 1. Draw the knot diagram K, large and clear.

Step 2. Label its arcs 1, 2, . . . , n, and its crossing points ©1 , ©2 , . . . , ©n . (This is possible

by Proposition 1.)

Step 3. Orient the diagram. This means to give a direction to K by placing arrows along

the sketch of the string, as though we were indicating the direction of flow of

liquid or electricity along the loop. (It doesn’t matter which of the two possi-

ble orientations, or directions, we choose, as long as we stick to one orientation

throughout.)

Step 4. Write down an n×n matrix of zeroes. Label its rows 1, 2, . . . , n, and its columns

©1 , ©2 , . . . , ©n .

Step 5. For every crossing point ©̀, with direction and neighbouring arcs as shown, mod-

ify the matrix of Step 4 as follows:

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.

.................................................................................. ..................................................................................

.....

..........................

.....................

i

j k

©̀

In column ©̀ of the matrix,
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add 1 − x to the entry in row i (i.e. the (i, `)-entry);

add −1 to the entry in row j (i.e. the (j, `)-entry);

add x to the entry in row k (i.e. the (k, `)-entry).

Call the resulting n × n matrix A.

Step 6. Compute any minor or cofactor of A. This gives a polynomial in x. (Note: We

define the determinant of a 0 × 0 matrix to be 1.)

Step 7. If the polynomial in Step 6 has no constant term, say xr is the lowest degree term

appearing, then divide this polynomial by xr. The resulting polynomial has a

nonzero constant term.

Step 8. If the polynomial resulting from Step 7 has a negative constant term, multiply

the polynomial by −1; otherwise leave it unchanged.

The polynomial resulting from Step 8 is the Alexander polynomial of A, and is denoted

AK(x). It is clear by construction that AK(x) is a polynomial in x having integer coeffi-

cients.

As an example, we compute the Alexander polynomial of the left-handed trefoil knot

K2, following the above eight steps:

Step 1. Step 2.

Step 3. Step 4.
1
2
3





0
©1

0
©2

0
©3

0 0 0
0 0 0





Step 5. A =





x

©1
1−
©2

x −1
©3

−1 x 1 − x

1 − x −1 x





1
2
3

Step 6. The (1, 2)-minor of A is
∣

∣

∣

∣

−1 1 − x

1 − x x

∣

∣

∣

∣

= −1 + x − x2.

Step 7. −1 + x − x2 Step 8. AK2
(x) = 1 − x + x2.
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When the number n of crossings is large, great care is required to correctly compute

the (n−1)×(n−1) minor in Step 6. It is useful to have a number of safeguards for checking

whether the computations are correct. Here are some means of checking computations:

(i) A should be singular. If you are using MAPLE, check that det(A) = 0.

(ii) The sequence of coefficients of AK(x) should be palindromic, i.e. read the same from

left-to-right as right-to-left. (Examples of palindromes in English are “Madam in

Eden, I’m Adam” and “Able was I ere I saw Elba”.) Observe that the Alexander

polynomials given for K1 through K6 each have this property.

(iii) The Alexander polynomial AK(x) is independent of the choice of minor used in Step 6.

If working by hand, try a different minor. If working with MAPLE, asking for adj(A)

gives all cofactors of A (which are plus or minus the minors of A) and it should be

easy to inspect adj(A) (possibly after factoring entries) to see that all entries give

the same final polynomial after repeating Steps 7 and 8. For instance, in the example

above we have

adj(A) =







1 − x + x2 1 − x + x2 1 − x + x2

1 − x + x2 1 − x + x2 1 − x + x2

1 − x + x2 1 − x + x2 1 − x + x2






.

By inspection, all entries are the same, which provides a check that 1− x + x2 is the

correct Alexander polynomial.

We will use the following theorem without proof.

Theorem 2. If K and K ′ are equivalent knot diagrams, then K and K ′ have the

same Alexander polynomial. Therefore the Alexander polynomial depends only on the

knot, not on the particular choice of diagram representing the knot.

For example, we compute the Alexander polynomial of K4 :

A =











1 − x −1 x 1 − x

x 0 −1 0

−1 1 − x 1 − x x

0 x 0 −1











,
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adj(A) =











−1 + x − x2 −1 + x − x2 −1 + x − x2 −1 + x − x2

−1 + x − x2 −1 + x − x2 −1 + x − x2 −1 + x − x2

−x + x2 − x3 −x + x2 − x3 −x + x2 − x3 −x + x2 − x3

−x + x2 − x3 −x + x2 − x3 −x + x2 − x3 −x + x2 − x3











,

and every entry of adj(A) gives the same polynomial AK4
(x) = 1 − x + x2.

As further illustrations, consider the following diagrams equivalent to the unknot, all

of which have Alexander polynomial 1:

K1 : ⇒ A = [ ] (no entries) ⇒ AK1
(x) = 1

K : ⇒ A =
[

1
]

⇒ AK(x) = 1

K ′ : ⇒ A =
[

−x

x

x

−x

]

, adj(A) =
[

−x

−x

−x

−x

]

⇒ AK′ (x) = 1

Connected Sums of Knots

Let’s suppose you have two pieces of string such as you were given in class, and that you

have formed knots K and K ′ with them. Disconnect both knots without disturbing the

tangled portions of either knot, and join together the two free ends of K and K ′. This

forms a single knot, called the connected sum of K and K ′, denoted K#K ′. Here we show

K4#K6 :

If K1 is the unknot as before, then obviously K#K1 and K1#K are both equivalent

to K. Therefore the unknot is a ‘two-sided identity’ for the operation of connected sum

(just like 0 is a two-sided identity for addition of integers, and 1 is a two-sided identity for

multiplication of integers).
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A knot K is called prime if anytime K is equivalent to K ′#K ′′, then at least one of

the two factors K ′ or K ′′ is an unknot. (This is just like the definition of prime numbers in

the positive integers!) The following analogue of the Fundamental Theorem of Arithmetic

holds for knots (stated here without proof).

Theorem 3. Any knot K can be decomposed as a connected sum of prime knots.

This decomposition is unique except for a possible reordering of the factors.

For example, the following knot K clearly factors as K2#K2, where K2 is the left-

handed trefoil knot:

One computes in this case that

AK(x) = AK2#K2
(x) = (1 − x + x2)2.

This is an illustration of the following amazing fact.

Theorem 4. If K and K ′ are any two knots, then AK#K′ (x) = AK(x)AK′ (x).

Knot catalogues only list prime knots, since all other knots can be easily formed from

these; and since their polynomials are readily computed using the polynomials of their

prime factors.

Finally we remark that our use of polynomials in the context of knots, does not involve

their use as functions; rather knot polynomials are used as polynomials in their own right!
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