
MATHEMATICS QUALIFYING EXAMINATION
in

ALGEBRA

January, 2005

Instructions: Complete six of the following problems, including three problems from each
section. Only your best three problems from each section will count. Complete solutions
are worth more than partial solutions.
Time permitted: 4 hours.

SECTION A

1. Let A be an n× n complex matrix. Suppose that A is unitary and all eigenvalues of
A are nonnegative real numbers. Prove that A = I, the n× n identity matrix.

2. Let V be a finite dimensional vector space over a field F and let T : V → V be a linear
operator. Let F [T ] denote the ring of all linear operators on V that can be expressed
as polynomials in T . Assume that no nonzero proper subspace of V is mapped into
itself by T .

(a) If 0 �= S ∈ F [T ], show that {v : S(v) = 0} is the zero subspace.

(b) Prove that every nonzero S ∈ F [T ] is invertible.

3. For every n × n complex matrix A, denote by C(A) the complex vector space of all
n× n complex matrices X such that AX = XA. If A is a 2× 2 matrix, what are the
possibilities for the dimension of C(A)? Justify your answer.

4. Let V be the vector space of all real 3 × 3 matrices. Show that every 4-dimensional
subspace U ≤ V contains a nonzero diagonalizable matrix.

Hint: Consider the subspace S consisting of all symmetric 3 × 3 matrices.

5. Let V be a 4-dimensional vector space over a field F , and let B1 and B2 be two bases
for V . Show that there exists a basis for V consisting of two members of B1 and two
members of B2.
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6. Let V be the vector space of all continuous functions R → R. For at least two of the
following indicated subspaces in (a,b,c), find the dimension of the indicated subspace,
and give an explicit basis.

(a) The subspace consisting of all functions f such that f is piecewise linear, with
the restriction of f to each of the intervals (−∞,−1], [−1, 1], [1,∞) being linear.

(b) The subspace consisting of all functions f satisfying f(a + b) = f(a) + f(b) for
all a, b ∈ R.

(c) The subspace spanned by all functions of the form f(x) = sin(x + a) sin(x + b)
where a, b ∈ R.

7. Let v1, v2, . . . , vn be vectors in a real inner product space. Define A to be the n × n

matrix whose (i, j)-entry is (vi, vj). Prove that A is positive definite if and only if the
vectors are linearly independent.

8. Let V be an n-dimensional vector space over a field F . Let ( , ) : V ×V → F be a map
which is linear on the 1st position and also linear in the 2nd position. (Such a map is
called a bilinear form.) Let w1, w2, . . . , wk ∈ V . Prove that {v ∈ V : (wi, v) = 0 for
i = 1, 2, . . . , k} is a subspace of V of dimension at least n− k.

Hint: Consider L : V → F k mapping a vector v ∈ V to the transpose of [(w1, v),
(w2, v), . . . , (wk, v)].

SECTION B

9. Let G be a group, and let S be a subset of G. If S is a right coset of a subgroup
H1 ≤ G and also a right coset of a subgroup H2 ≤ G, prove that H1 = H2.

10. Let G be a finite group.

(a) If G is cyclic and H is a subgroup of G, prove that φ(H) = H for all φ ∈ Aut(G).

(b) If C ≤ H ≤ G where H is cyclic, show that C is a normal subgroup of G.

11. Let G be a finite group with exactly n Sylow p-subgroups for some prime p. Show that
there exists a subgroup H of the symmetric group Sn such that H also has exactly n
Sylow p-subgroups.
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12. Let G be a subgroup of the multiplicative group of real invertible 2 × 2 matrices. If
A2 = I for every A ∈ G, prove that the order of G divides 4.

13. Let f(X, Y ) be a polynomial with real coefficients, and suppose f(a, a2) = 0 for every
a ∈ R. Prove that f(X, Y ) = (Y −X2)g(X, Y ) for some polynomial g(X, Y ) with real
coefficients.

14. Let R be the ring of all continuous real-valued functions R → R, and for every a ∈ R,
let Ma be the set of all f ∈ R such that f(a) = 0. Prove that Ma is a maximal ideal
of R.

15. Let F = {a+ bα+ cα2 : a, b, c ∈ Q} where α is the real cube root of 2. Prove that F
is a field, and that

√
2 /∈ F .

16. Let F be an arbitrary field, and let F [[X ]] be the set of formal Laurent series akXk +
ak+1X

k+1 + ak+2X
k+2 + · · · where ai ∈ F and k ∈ Z. Prove that F [[X ]] has a

multiplicative identity, and that every nonzero element of F [[X ]] has a multiplicative
inverse. (It follows that F [[X ]] is a field; you are not required to show this.)
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SOLUTIONS

DISCLAIMER: You should not read solutions for any problem until after trying the
problem yourself, and that should happen only after you have studied the relevant material
(any graduate-level textbooks on linear and abstract algebra will suffice). Moreover, these
printed solutions are not a substitute for personal attention of our faculty who are anxious
to discuss your work on any problems you have attempted. In any case, do not expect that
memorized solutions such as these will be helpful to reproduce in written work on future
exams. It is the most basic themes (how to use diagonal and other canonical forms for
matrices; applications of the isomorphism theorems; etc.. . . ) and not individual problems
that you may expect to recur. Again: it is only by attempting problems, then seeking help
if you find you are stuck, that you can hope to learn; not by memorizing printed solutions.

1. Since A is unitary, we have A = U−1DU where U is invertible (in fact unitary,
although we don’t need this) andD is diagonal with diagonal entries λ1, λ2, . . . , λn ∈ C

such that |λi| = 1 for all i. Now the hypothesis that λi ∈ [0,∞) forces every eigenvalue
λi = 1, so D = I and A = U−1U = I.

2. Since S ∈ F [T ], we have that S commutes with T and so ker(S) is invariant under
T . (This is a standard fact with a short proof: if Sv = 0 then TSv = STv = 0 so
Tv ∈ ker(S).) By hypothesis we must have ker(S) = {0} or V . The first alternative
is ruled out by the hypothesis that S �= 0, so in fact ker(S) = 0 and (a) holds. Also
since V is finite dimensional, ker(S) = 0 implies that S is surjective, so (b) holds.

3. Consider first the case that A is in Jordan normal form. If A =
[
λ
0

0
µ

]
then comparing

entries on both sides of AX = XA we see that X must be diagonal, unless λ = µ in
which case X is arbitrary; thus C(A) has dimension 2 or 4 respectively. Otherwise
A =

[
λ
0

1
λ

]
and comparing entries on both sides of AX = XA shows that X =

[
a
0
b
a

]
for some a, b ∈ C, i.e. C(A) is 2-dimensional.

Now C(A) must have dimension 2 or 4 in the general case as well. This is because
for every invertible matrix U , we have that X commutes with A, iff U−1XU commutes
with U−1AU , and in particular C(U−1AU) = U−1C(A)U has the same dimension as
C(A).

4. Let U ≤ V be any 4-dimensional subspace, and let S ≤ V be the subspace con-
sisting of all symmetric matrices. Note that S is 6-dimensional; in fact S has basis
{E11, E22, E33, E12+E21, E13+E31, E23+E32} where Eij is the elementary matrix with
entry 1 in the (i, j)-position and zeroes elsewhere. Now

dim(U ∩ S) = dimU + dimS − dim(U+S) ≥ 4 + 6 − 9 = 1

so U ∩ S contains a nonzero matrix; and this matrix is real symmetric, hence diago-
nalizable.
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5. Let B1 = {u1, u2, u3, u4} and B2 = {v1, v2, v3, v4} be two bases for V . Since B1

spans V , there exist a1, . . . , a4 ∈ F such that v1 = a1u1+a2u2+a3u3+a4u4. Since
v1 �= 0, not all ai are zero; so we may assume (after permuting the members of
B1 if necessary) that a1 �= 0. Thus u1 = a−1

1 (v1−a2u2−a3u3−a4u4). It follows
that V = 〈v1, u1, u2, u3, u4〉 = 〈v1, u2, u3, u4〉 where 〈S〉 ≤ V denotes the subspace
spanned by a subset S ⊆ V . Thus {v1, u2, u3, u4} is a basis of V . Similarly, v2 =
b1v2+b2u2+b3u3+b4u4 for some bi ∈ F . Since {v1, v2} is linearly independent, the
coefficients b2, b3, b4 are not all zero; so we may assume (after permuting u2, u3, u4

if necessary) that b2 �= 0; thus u2 = b−1
2 (v2−b1v2−b3u3−b4u4). It follows that V =

〈v1, v2, u2, u3, u4〉 = 〈v1, v2, u3, u4〉 and so {v1, v2, u3, u4} is a basis for V .

6. (a) Every function f ∈ V is uniquely determined by four real constants a = f ′(−2),
b = f(−1), c = f(1), d = f ′(2) and has the form f = af1 + bf2 + cf3 + df4 where

f1(x) =
{
x+1, if x<− 1;
0, if x≥− 1; f2(x) =

{ 1, if x<− 1;
(1−x)/2, if −1 ≤ x<1;
0, if x≥1;

f3(x) =

{ 0, if x<− 1;
(1+x)/2, if −1≤x<1;
0, if x ≥ 1;

f4(x) =
{

0, if x<1;
x−1, if x≥− 1.

So {f1, . . . , f4} spans V and the uniqueness of the coefficients a, . . . , d in this
linear combination means that we have a basis; thus dim(V ) = 4.

(b) By induction we have f(mx) = mf(x) for all m ∈ Z and x ∈ R; also if m,n ∈ Z

with n �= 0 then nf
(
m
n

)
= mnf

(
1
n

)
= mf(1) so f

(
m
n

)
= m

n f(1). Since f is
continuous and Q is dense in R, this means that f(x) = f(1)x for all x ∈ R.
Thus the function f1(x) = x forms a basis for V , which has dimension 1.

(c) Note that

sin(x+ a) sin(x+ b) = [sina cosx+ cos a sinx][sin b cosx+ cos b sinx]

= sin a sin b cos2 x+ [sin a cos b+cos a sin b] sinx cosx
+ cos a cos b sin2 x

is a linear combination of the functions f1(x) = sin2 x, f2(x) = sinx cosx, f3(x) =
cos2 x. If af1+bf2+cf2 = 0 then evaluating at 0, π

4
, π

2
respectively gives c = 0,

(a+b+c)/2 = 0, a = 0 which yields a= b= c=0. Thus {f1, f2, f3} is a basis for
V , which accordingly has dimension 3.

7. Let v = a1v1 + a2v2 + · · ·+ anvn where a1, a2, . . . , an ∈ R; then

0 ≤ (v, v) =
n∑
i=1

n∑
j=1

(vi, vj)aiaj = aTAa
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where a = (a1, a2, . . . , an)T ∈ Rn. In any case, A is positive semidefinite. Note that
equality holds above iff v = 0. The matrix A is indefinite (i.e. not positive definite)
iff there exists a nonzero n-tuple a such that 0 = aTAa = (v, v), iff there exists a
nonzero a ∈ Rn such that the linear combination v = 0, iff the vectors v1, v2, . . . , vn
are linearly dependent.

8. Consider L : V → F k mapping a vector v ∈ V to the transpose of [(w1, v), (w2, v), . . . ,
(wk, v)]. Clearly L is linear, with image L(V ) ≤ F k of dimension at most k. The
required dimension is simply

dim(kerL) = dimV − dimL(V ) ≥ n− k.

9. Suppose S = H1g1 = H2g2 for some g1, g2 ∈ G. Denoting S−1 = {s−1 : s ∈ S}, we
have

SS−1 = {s1s−1
2 : s1, s2 ∈ S} = {(xg1)(yg1)−1 : x, y ∈ H1}

= {xg1g−1
1 y−1 : x, y ∈ H1} = {xy−1 : x, y ∈ H1} = H1.

The same reasoning gives SS−1 = H2 .

10. (a) Let H ≤ G where G is a finite cyclic group. Then for every φ ∈ Aut(G), the
subgroup φ(H) ≤ G has the same order as H. Since H is the unique subgroup
of order |H|, this forces φ(H) = H.

(b) Let C ≤ H ≤ G where C is cyclic. Let g ∈ G and consider the inner automor-
phism of G given by ψg(x) = gxg−1 for x ∈ G. Then ψg(H) = H since H ≤ G,
and the restriction of ψg toH gives an automorphism of H (not necessarily inner).
Since H is cyclic, by (a) we must have ψg(C) = C, i.e. C ≤ G.

11. Let P1, P2, . . . , Pn be the distinct Sylow p-subgroups of G. For every g ∈ G, conju-
gation by g gives rise to a permutation ψg ∈ Sn of the Sylow p-subgroups: gPig−1 =
Pψg(i). Here we have identified each permutation of the Sylow p-subgroups, with the
corresponding permutation of subscripts 1, 2, . . . , n. This is a permutation action of
G of degree n, i.e. the map ψ : G→ Sn given by g �→ ψg is a homomorphism; the fact
that ψgh = ψgψh for all g, h ∈ G follows from

Pψgh(i) = (gh)Pi(gh)−1 = ghPih
−1g−1 = gPψh(i)g

−1 = Pψg(ψh(i)).

Let H = ψ(G) ≤ Sn and let K = ker(ψ) ≤ G. We claim that the Sylow p-subgroups
of H are given by ψ(P1), . . . , ψ(Pn). In fact |ψ(Pi)| = |Pi|/|Pi ∩ K| by the First
Isomorphism Theorem, so ψ(Pi) ≤ H is a p-subgroup; also the index

[H :ψ(Pi)] = [G :K]/[Pi :Pi ∩K] = [G :Pi]/[K :Pi ∩K]

divides [G :Pi] which is not divisible by p. Thus ψ(Pi) ≤ H is a Sylow p-subgroup.
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12. Since every element of G has order 1 or 2, G is elementary abelian of order 2k

for some k ≥ 0. By hypothesis, every A ∈ G has minimal polynomial dividing
X2 − 1 = (X + 1)(X − 1) so A is diagonalizable with eigenvalues ±1, and since el-
ements of G commute, they are simultaneously diagonalizable. Up to similarity (i.e.
conjugation by a real 2× 2 invertible matrix) H is contained in the Klein 4-subgroup{[

1
0

0
1

]
,
[−1

0
0
1

]
,
[
1
0

0
−1

]
,
[−1

0
0

−1

]}
so |H| divides 4.

13. Every monomial X iY j satisfies X iY j ≡ X i+2j mod(Y−X2). [Here (Y−X2) ⊂
R[X, Y ] denotes the ideal generated by Y−X2.] This means that every f(X, Y ) ∈
R[X, Y ] can be written in the form f(X, Y ) = (Y−X2)q(X, Y ) + r(X) for some
q(X, Y ) ∈ R[X, Y ] and some r(X) ∈ R[X ]. Evaluating at (a, a2) gives 0 = 0 + r(a)
for all a ∈ R so r(X) = 0 (the zero polynomial).

14. Define φ : R → R by f �→ f(a). Such evaluation of functions is always a ring
homomorphism: we have φ(f + g) = (f + g)(a) = f(a) + g(a) = φ(f) + φ(g) and
φ(fg) = (fg)(a) = f(a)g(a) = φ(f)φ(g) for all f, g ∈ R. By definition Ma is the
kernel of this homomorphism, so Ma ⊂ R is an ideal. Also φ is surjective since every
a ∈ R is the image of (for example) the function with constant value a. The First
Isomorphism Theorem gives R/Ma

∼= R, which is a field; therefore the ideal Ma ⊂ R

is maximal.

15. The polynomial f(X) = X3−2 ∈ Q[X ] is irreducible over Q by Eisenstein’s Criterion
(the prime 2 divides all but the leading coefficient, and 4 does not divide the constant
term). Therefore Q[X ]/(f(X)) ∼= Q(α) = F is a field which is an extension of Q of
degree deg f(X) = 3. [This is the standard construction of field extensions. Note that
the evaluation map Q[X ] → Q[α] given by g(X) �→ g(α) is a surjective ring homo-
morphism with kernel (f(X)), so the isomorphism Q[X ]/(f(X)) ∼= Q[α] follows from
the First Isomorphism Theorem as in Question 14. Moreover the Division Algorithm
applied to an arbitrary polynomial g(X) ∈ Q[X ] gives g(X) = (X3−2)q(X) + a +
bX + cX2 for some q(X) ∈ Q[X ] and a, b, c ∈ Q so that g(α) = a + bα + cα2 and
Q[α] = F .]

We have [F : Q] = 3 and a similar argument gives [K : Q] = 2 where K = Q[
√

2].
If

√
2 ∈ F then [F : Q] = [F :K][K : Q], which is impossible since 2 does not divide 3.

16. Clearly 1 ∈ F [[X ]] (regarded as a Laurent series) is a multiplicative identity. Let
f(X) =

∑
i≥k aiX

i ∈ F [[X ]] be nonzero; we may assume that ak is nonzero. We show
that f(X) has a multiplicative inverse g(X) =

∑
i≥−k biX

i ∈ F [[X ]]; thus we require

(akXk+ak+1X
k+1+ak+2X

k+2+· · ·)(b−kX−k+b−k+1X
−k+1+b−k+2X

−k+2+· · ·) = 1.

In particular b−k = a−1
k ∈ F exists since ak �= 0. We proceed to determine the

remaining coefficients of g(X) inductively: having found b−k, b−k+1, . . . , b−k+j−1 ∈ F ,
then equating coefficients of Xj on both sides of the above relation yields

akb−k+j + ak+1b−k+j−1 + · · · + ak+jb−k = 0

and so b−k+j = −a−1
k

∑j
i=1 ak+ib−k+j−i ∈ F . Conversely, the element g(X) =∑

i biX
i having these coefficients satisfies f(X)g(X) = 1.
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