
 

Inversive Plane Geometry 
 

An inversive plane is a geometry with three undefined notions: points, circles, and an incidence 

relation between points and circles, satisfying the following three axioms: 

 

 

 (I.1)  Through any three distinct points there is  

                     exactly one circle. 

 

 

 

 

 (I.2)  If 𝑃 and 𝑄 are points, and 𝐶 is a circle 

                     passing through 𝑃 but not 𝑄, then there 

                     is a unique circle 𝐶′ passing through 𝑄 

                     such that 𝐶 ∩  𝐶′ =  {𝑃}. 

 
 

 (I.3)  There exist four points which do not lie on a common circle. 

 

A model of these axioms is provided by the points and circles lying on a sphere 𝑆 in Euclidean 3-

space. Another (obtained by stereographically projecting 𝑆 onto a plane) is the extended Euclidean 

plane 𝐸 =  2
 ∪  {∞} consisting of the Euclidean plane 2

 together with one new point ∞ called the 

point at infinity.  (This is different from the real projective plane in which there are many points at 

infinity.)  The circles of 𝐸 are of two types: the ordinary circles of 2
, and sets of the form ` ∪  {∞} 

where ` is a line of 2
.  Because the second model is obtained from the first by stereographic 

projection, the two models are isomorphic.  Other models exist (in particular finite models) but we 

will be primarily concerned with the model 𝐸 described above, called the real inversive plane.  In 

this case we may reasonably measure distances and angles. 

 

Straightedge and Compass Constructions 
 

It is often instructive to provide, along with the relevant definitions, straightedge-and-

compass constructions; and we shall often do so when this is feasible.  Recall that the following 

procedures can be implemented using straightedge and compass: 
 

1. Given a point 𝑃 and a line `, construct the line through 𝑃 perpendicular to `. 

2. Find the midpoint of a line segment 𝐴𝐵. 

3. Bisect an angle 𝐴𝐵𝐶. 
 

Using these basic constructions we can perform others, for example: 

 

Lemma 1. Given line segments of lengths a and b, one may construct a line segment of length ab .  

Thus given a rectangle, we may construct a square with the same area. 
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Proof.  Construct a line segment AB containing a point C such that 

AC = a and BC = b.  Construct the midpoint O of AB.  Construct a 

semicircle centered at O with radius OA = OB.  Construct a 

perpendicular l to AB at C.  Let D be the point of intersection of l 

with the semicircle. We will show that CD has the required length

ab .  Observe that triangles ACD and DCB are similar since 

corresponding angles are equal.  Therefore 

CD

AC
 = 

CB

DC
, 

i.e. CD2 = AC · CB = ab  as required.                                                                                                   □              

 

We will show that given a circle C and a point P outside C, one may construct a tangent from P to C.  

This construction relies on the following result. 

 

Lemma 2.  Let C be a circle and let P be a point outside C.  Consider a  

tangent PT to C, and a secant through P meeting C at A and A′.  Then 

PA · PA′ = PT2. 

 

Proof.  Let O be the center of C, and let r be the radius.  Drop a 

perpendicular OB from O to the secant, as shown.  

Then 

 

 

 

 

 
 

Lemma 3.  Given a circle C and a point P outside C, one may construct tangents from P to C. 

 

Proof.  Construct any secant to C through P, and let A and A′ be the points of intersection of this 

secant with C.  By Lemma 1 one may construct a line segment of length PAPA  · ' , which is the 

length of the required tangent.  Set the radius of the compass to this length and draw an arc centered 

at P to intersect C at two points Q and R.  Then PQ and PR are the required tangents.          □ 

PT2 = OP2 – OT2 by Pythagoras’ Theorem for triangle PTO 

 = OP2 – OA2 since OA = OT = r 

 = OP2 – (OB2 + AB2) by Pythagoras’ Theorem for triangle ABO 

 = (OP2 – OB2) – AB2  

 = PB2 – AB2 by Pythagoras’ Theorem for triangle PBO 

 = (PB + AB) (PB – AB)  

 = PA′ · PA 
since BA′ = BA.                                        □ 

a b 

  l 
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                                    The Real Inversive Plane 
 

 Two circles in E are orthogonal (i.e. 

perpendicular) if they intersect at right angles.  Note that 

in this case the circles meet twice, and if the angle at one 

point of intersection is 90°, the angle at the other point of 

intersection must also be 90°. 

 

Given a circle C with center O, and a point P, we define 

the inverse P′ of P in C as follows.  The inverse of 

every point of C is itself (P′ = P).  The inverse of O is 

∞, and the inverse of ∞ is O.  If P is inside C (but 

different from O) then extend the line OP beyond the 

circle C and erect a perpendicular to this line at P.  This 

perpendicular meets C at points Q and R, say.  The 

tangents to C at Q and at R meet at P′.  (Recall that the 

tangents are constructed as lines perpendicular to the 

radii OQ and OR.)  Conversely the image of P′ is P.  In 

order to construct P given P′, we first join the line OP′.  

Construct the tangents from P′ to C (see Lemma 3 for 

this construction).  The line QR intersects OP′ at the 

required point P. 

 

The latter construction yields an algebraic formula for 

inversion:  Note that the triangles OPQ and OQP′ are similar, since they share a common angle at O, 

and the corresponding angles at P and Q (respectively) are right angles.  Therefore corresponding 

sides of the two triangles are in the same proportion, so that 

OQ

OP
 = 

PO

OQ


 . 

 

Since  OQ = r  is just the radius of C, we obtain 

OP′ = 
OP

r 2

. 

Given that P′ lies on the line OP, the position of P′ is uniquely determined by its distance from O as 

given by this formula.  We now prove a remarkable fact about pairs of inverse points: 

 

Two 

orthogonal 

circles 
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Theorem 1.  Let C be a 

circle, and let P and P′ 

be an inverse pair of 

points with respect to C.  

Then every circle 

through P and P′ is 

orthogonal to C. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the special case that 

C has infinite radius 

(i.e. C is a Euclidean 

line) then inversion is 

simply reflection in this 

line, and the points P 

and P′ are mirror 

images in C. 
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Proof of Theorem 1.  Consider any circle C′ 

through P and P′, and let T be the center of 

C′.  Let S be a point of intersection of C′ 

with T.  In order to show that the circles C 

and C′ are orthogonal, we only need to show 

that OS is tangent to C′.  Since the points P 

and P′ are inverse in C, we have OP · OP′ = 

OS2.  Therefore OS = ' · OPOP  which, by 

Lemma 2, is exactly the length of the 

tangent from O to C′.  Therefore OS is 

tangent to C′ as required.                □ 

 

 

 

Theorem 2.  Inversion takes circles to circles. 

 

Proof.  Let C be a circle with center O.  Let A and 

A′ be points inverted by C, and let T and T′ be 

another pair of inverse points with respect to C.  Let 

l be the line passing through O, T and T′.  Let m be 

the line passing through O, A and A′.  Let C1 be the 

unique circle through A  tangent to l at T, and let C2 

be the unique circle through A′ tangent to l at T′ as 

shown.  Let B be the second point of intersection of 

m with C1, and let B′ be the second point of 

intersection of m with C2 .  We must show that B′ is 

the inverse of B with respect to C, i.e. OB · OB′ = r2 

where r is the radius of C. 

 

By Lemma 2 we have  OT2 = OA · OB  and  (OT′)2 = OA′ · OB′.  Since T and T′ are inverse in C we 

have OT · OT′ = r2, and similarly OA · OA′ = r2.  Therefore 
 

r4 = (OT)2
 · (OT′)2 = OA · OB · OA′ · OB′ = r2

 OB · OB′ 

which yields  r2 = OB · OB′  as required.                                                        □ 
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Theorem 3.  Inversion preserves angles. 

 

Proof.  Consider a pair of points P and P′ 

inverted by a circle C, and let C1 and  C2 be 

two circles through P and P′.  Let α and α′ 

be the angles between C1 and C2, at P and at 

P′ respectively, as shown.  (This really 

means the angles between the tangent lines 

to the circles C1 and C2, at P and P′ 

respectively.)  By Theorem 2, the inverse of 

C1 in C is a circle through P and P′, meeting 

C at the same points as C1 does.  But these 

points uniquely determine the circle C1 , so 

the inverse of C1 with respect to C is C1 .  Similarly the inverse of C2 with respect to C is C2 .  

Therefore inversion takes angle α to angle α′.  However these two angles must be the same size by 

symmetry, since they are the angles between circles C1 and C2 at their two points of intersection. 

Thus α′ = α as required.                                                                       □ 
 

 

Note that inversion, like reflection, reverses orientation of plane 

figures.  The accompanying figure shows a letter ‘R’ and its 

inverse image in the circle C; note that in addition to distances 

being distorted, the orientation of the ‘R’ has been reversed. 

 

 

 

 

Interpreting Inversion in the Hyperbolic Plane 
 

Let C and C′ be a pair of orthogonal circles.  

Recall that the points of the plane interior to C 

represent points of the hyperbolic plane; and the 

arc of C′ interior to C represents a line of the 

hyperbolic plane.  Inversion in C′ represents a 

reflection in the hyperbolic plane. 


