
REVIEW: Basic Notation and Properties of the Integers

We will standard notation for the following number systems:

Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}, the set of all integers;

N = {1, 2, 3, . . .}, the set of all natural numbers;

Q =
{

a
b : a, b ∈ Z, b 6= 0

}
, the set of all rational numbers;

R, the set of real numbers, including Q but also π,
√

2, etc.; intuitively, all numbers

on the ‘number line’;

C = {a+ bi : a, b ∈ R} where i =
√
−1, the set of all complex numbers.

Number theory is concerned primarily with properties of Z; but to fully understand Z
often requires raising our sights to other number systems, as we shall see.

Let a and b be integers. We say that a divides b, if b = ka for some integer k. In

symbols, this relationship is written as a
∣∣ b. In this case we also say that a is a divisor of

b, or that b is a multiple of a. If this relation does not hold, i.e. a does not divide b, we

write a 6
∣∣ b. Thus, for example, we have 3

∣∣ 6 and 4 6
∣∣ 6. The number 6 has exactly eight

divisors: 1, 2, 3, 6, −1, −2, −3 and −6.

Divisibility is an example of a relation. Another example of a relation is the ‘less

than relation’; thus, for example, 5 is less than 7, denoted 5 < 7. We distinguish between

relations and operations. Operations, such as addition (as in ‘5 + 7’) and multiplication

(as in ‘5× 7’) yield numerical values; not so for a relation such as ‘5 < 7’ which is simply

a statement expressing a relationship between two numbers. Thus for any two numbers a

and b, the statement a < b is either true or false; but it does not have a numerical value.

Just so for divisibility: a|b is either true or false, depending on the values of a and b; but

it is a statement, not a number. We have not yet begun to divide (which would be an

operation).

Several properties of divisibility are well known and easily verified; for example

Proposition 1. Let a, b, c be integers.

(a) If a
∣∣ b and b

∣∣ c, then a
∣∣ c.

(b) If c divides both a and b, then c also divides their sum a+ b as well as their difference

a− b.

Proof. If b = ka and c = `b for some integers k and `, then c = (k`)a. This proves (a).
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Next, suppose a = rc and b = sc; then a + b = (r + s)c and a − b = (r − s)c. This

proves (b).

The divisors of 6 are ±1,±2,±3,±6. The divisors of 20 are ±1,±2,±4,±5,±10,±20.

The numbers 6 and 20 have four common divisors are ±1,±2, of which the largest is 2.

We write gcd(6, 20) = 2 (the greatest common divisor of 6 and 20 is 2).

Note that every integer divides 0. (For example, 5 divides 0 since 5 = 5 × 0.) The

divisors of 0 are 0,±1,±2,±3, . . .. The common divisors of 6 and 0 are ±1,±2,±3,±6,

the greatest of which is 6; thus gcd(6, 0) = 6.

Similarly we can define gcd(a, b) for any two integers a and b, provided that a and

b are not both zero. (The value of gcd(0, 0) is undefined since the common divisors of 0

and 0 include all integers, of which there is no largest.) Two integers a and b are relatively

prime, or coprime, if gcd(a, b) = 1.

An integer n > 1 is prime if its only positive divisors are 1 and n; otherwise it is

composite. The number 1 is in a class by itself, neither prime nor composite.

The Division Algorithm

Now we will start to divide! Let a and d be integers with d positive. There exist

unique integers q and r such that

a = qd+ r and r ∈ {0, 1, 2, . . . , d− 1}.

‘Unique’ means that there is only one choice for q and r satisfying these conditions. We q

the quotient , and r the remainder , when a is divided by d. Note that d divides a iff the

remainder r = 0.

Examples:

70 = 6× 11 + 4. When 70 is divided by 11, the quotient is 6 and the remainder is 4.

Clearly 11 6
∣∣ 70.

70 = 5× 11 + 15. However, 15 is not in the required range {0, 1, 2, . . . , 10}, so it is not

the remainder (and 5 is not the quotient).

−70 = (−7)×11+7. When −70 is divided by 11, the quotient is −7 and the remainder

is 7.
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Congruences

Fix a positive integer n. Given integers a and b, we say that a is congruent to b

(modulo n) if b − a is divisible by n; in symbols, this is written a ≡ b mod n (or if the

choice of modulus n is understood, we simply write a ≡ b). If this relation does not hold,

i.e. a is not congruent to b, we write a 6≡ b. The following properties hold for congruences:

Proposition 2. Fix a positive integer n as the modulus in each of the following congru-

ences. For all integers a, b, c we have

(a) a ≡ a.

(b) If a ≡ b then b ≡ a.

(c) If a ≡ b and b ≡ c, then a ≡ c.
(d) If a ≡ b and c ≡ d, then a+ c ≡ b+ d and ac ≡ bd.

Properties (a)–(c) say that congruence modulo n is an equivalence relation. Property

(d) says that sums and products are well-defined for congruence classes.

Proof. Since a−a = 0 is divisible by n, (a) holds. If b−a = kn then a− b = (−k)n, which

proves (b). If b−a and c− b are divisible by n then so is their sum c−a = (b−a) + (c− b)
by Proposition 1; this proves (c).

If b− a = rn and d− c = sn, then (b+ d)− (a+ c) = (r + s)n so a+ c ≡ b+ d; also

bd− ac = (b− a)d+ (d− c)a = rnd+ sna = (rd+ sa)n

so ac ≡ bd.

Let us use congruences to show that the equations x2 − 3y2 = 104 has no solution

in integers. First observe that for every integer a, we have a2 ≡ 0 or 1 mod 3. (By the

Division Algorithm, we have a = 3q + r for some r ∈ {0, 1, 2} so a ≡ 0, 1 or 2 mod 3; and

we check that a2 ≡ 0 or 1 mod 3 in each case.) It follows that x2 − 3y2 ≡ 0 or 1 mod 3

for all integers x, y; however 104 ≡ 2 mod 3.

Modular Arithmetic

Again fix a positive integer n. The set Zn = {0, 1, 2, . . . , n − 1} is a number system

with addition and multiplication defined modulo n. Thus for example the number system

Z4 = {0, 1, 2, 3} has addition and multiplication defined by the tables
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A statement like 2+3 = 1, valid in Z4, must not be taken out of context; the statement does

not hold in Z, where the operation of addition, and the numbers themselves, have a different

meaning. To be precise, we should use different symbols in Z4. This is often resolved by

denoting Z4 = {0, 1, 2, 3} or {[0]4, [1]4, [2]4, [3]4} where the new symbols represent the

congruence classes modulo 4:

0 = 4Z = {4k : k ∈ Z} = {. . . ,−8,−4, 0, 4, 8, 12, 16, . . .};

1 = 4Z + 1 = {4k + 1 : k ∈ Z} = {. . . ,−7,−3, 1, 5, 9, 13, 17, . . .};

2 = 4Z + 2 = {4k + 2 : k ∈ Z} = {. . . ,−6,−2, 2, 6, 10, 14, 18, . . .};

3 = 4Z + 3 = {4k + 3 : k ∈ Z} = {. . . ,−5,−1, 3, 7, 11, 15, 19, . . .}.
These are simply the equivalence classes for the equivalence relation of congruence mod-

ulo 4. With this understanding we have

2 + 3 = {. . . ,−6,−2, 2, 6, . . .}+ {. . . ,−5,−1, 3, 7, . . .}

= {. . . ,−11,−7,−3, 1, 5, 9, 13, . . .} = 1.

However, we soon find the extra notation tiresome, and drop them the way one outgrows

training wheels on a bicycle. At this point our perspective changes: rather than regarding

Z4 as ‘coming from Z’, we regard Z4 as a number system that exists in its own right

alongside the other number systems Z, Q, R, etc. However one should always remember

that Z4 is not a subset of Z. The fallacy of this notion (encouraged by our abuse of the

symbols 0, 1, 2, 3 to represent two things in different contexts) is emphasized by the fact

that the statement 2 + 3 = 5 = 1 is true in Z4, but false in Z. Similarly, Z3 is not a subset

of Z4, despite our laziness in using the same symbols 0, 1, 2 in these different contexts.

Note that Z3 = {0, 1, 2} = {[0]3, [1]3, [2]3} where in this context

0 = 3Z = {3k : k ∈ Z} = {. . . ,−6,−3, 0, 3, 6, 9, 12, . . .};

1 = 3Z + 1 = {3k + 1 : k ∈ Z} = {. . . ,−5,−2, 1, 4, 7, 10, 13, . . .};

2 = 3Z + 2 = {3k + 2 : k ∈ Z} = {. . . ,−4,−1, 2, 5, 8, 11, 14, . . .}.
These are quite different from the elements of Z4 listed above; and our use of the same

symbols is pure laziness. If there is any danger of confusion, we should go back to the old

notation

[a]n = nZ + a = {kn+ a : k ∈ Z} = {. . . , a− 2n, a− n, a, a+ n, a+ 2n, a+ 3n, . . .}.
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