
Infinite-Dimensional Vector Spaces
The ring R[t] of all polynomials in t with real coefficients, is a vector space over the

field R. (Here we ignore the multiplication of polynomials, and only consider vector space

operations: addition of polynomials, and multiplication by real scalars.) A natural basis

for this vector space is B = {1, t, t2, t3, . . .}. This means that every polynomial is uniquely

expressible as a linear combination of monomials tj ∈ B. For example, (1 + t)4 ∈ R[t] can

be expressed as a linear combination of 1, t, t2, t3, t4:

(1 + t)4 = 1 + 4t+ 6t2 + 4t3 + t4.

When we say that this linear combination is unique, we are disregarding silliness like

(1 + t)4 = 4t+ 6t2 + 1 + 2t3 + t4 + 0t5 + 2t3;

this linear combination is essentially the same as the previous one, after simply permuting

terms, adding terms with zero coefficients, or splitting up terms involving the same basis

vector.

More generally, let V be a vector space over a field F . A basis for V is a subset B ⊂ V
such that every vector v ∈ V can be uniquely expressed as a linear combination

v = a1v1 + a2v2 + · · ·+ akvk

for some k > 0; a1, a2 . . . , ak ∈ F ; and v1, v2, . . . , vk ∈ B. ‘Uniqueness’ is understood in

the sense above: unique up to permuting terms, after collecting terms and disregarding

terms with zero coefficient. Even in this sense, we may express the zero vector as a linear

combination of k = 0 terms (since by definition, an empty sum equals zero). Note that by

definition, a linear combination involves only finitely many terms; so convergence is not an

issue. (It is possible to study topological vector spaces, but here we only consider vector

spaces, an algebraic notion in which topological concerns of closure, convergence, etc. are

an unnecessary complication.)

As further examples, the rings R(t), R[[t]] and R((t)) are also vector spaces over R (see

earlier handouts for definitions of these rings); but here it is not so clear whether in fact a

basis is available in each of these cases.
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Whenever E ⊇ F is a field extension, we have learned to regard E as a vector space

over F . For example, C is a vector space over R, with basis {1, i}. Similarly, R is a vector

space over Q; but in this case it is not clear how to obtain a basis.

In the finite-dimensional case, finding a basis is straight-forward. Let V be a vector

space over a field F . If V = {0} then the empty set { } is a basis for V . Otherwise, let

0 6= v1 ∈ V . If V = 〈v1〉 then {v1} is a basis for V and we are done. Otherwise there

exists a vector v2 ∈ V with v2 /∈ 〈v1〉. Now if 〈v1, v2〉 = V , then {v1, v2} is a basis for V .

If not, then there exists a vector v2 ∈ V with v3 /∈ 〈v1, v2〉. Continue in this way. If V is

finite-dimensional, the process will eventually terminate, giving a basis for V . But if V is

infinite-dimensional, the process goes on indefinitely; and even after an infinite number of

steps, there is no guarantee that we end up with a basis for V .

For example, consider the vector space R over the field Q. It is possible, by the process

described in the previous paragraph, to obtain the set

{1,
√

2,
√

3,
√

5,
√

6,
√

7,
√

10,
√

11, . . .}.

This set is linearly independent, but it is not a basis for R over Q: for example, π is not a

linear combination of the numbers
√
m with rational coefficients. Adding π to our set, the

new set {π, 1,
√

2,
√

3, . . .} is still linearly independent; but it still fails to span all of R. In

fact, there is no basis of the form

{v1, v2, v3, . . .}

for R over Q. The problem is that the sequence v1, v2, v3, . . . is countably infinite; but the

dimension of R over Q is uncountably infinite. This fact is not quite obvious, so let us

explain:

Suppose V has a countably infinite basis B = {v1, v2, v3, . . .} over Q (an example is

Q[t] with basis {1, t, t2, t3, . . .}) and consider the chain of subspaces

V0 < V1 < V2 < V3 < · · ·

where
V0 = {0};

V1 = 〈v1〉;

V2 = 〈v1, v2〉;

V3 = 〈v1, v2, v3〉,

etc. so that dimVn = n for all n > 0. Note that the vector space Vn is isomorphic to

Qn, so it is countably infinite whenever n > 1. Since B spans V , every v ∈ V is a linear
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combination involving only finitely many basis vectors; so v ∈ Vn for some n > 0. This

says that

V =
∞⋃

n=0

Vn = V0 ∪ V1 ∪ V2 ∪ V3 ∪ · · · .

Since V is a countable union of countable sets, V is countable. However, R is uncountable;

so there is no countably infinite basis for R over Q: the dimension of R over Q must be

uncountable. How do we even begin to imagine constructing a basis for R over Q?

Using Zorn’s Lemma (as described in a previous handout), we may prove that every

vector space has a basis. This argument will be described in class.

The latter result gives a solution to the following

Problem. Show that there exists a function f : R→ R such that

• f(1) = 1;

• f(v + w) = f(v) + f(w) for all v, w ∈ R; and

• f(
√

2) = π.
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