
Extended Euclidean Algorithm for Polynomials

The following example was begun in class on Mon Feb 5, 2007 to compute the gcd of
the polynomials f(X) = 5X3 +2X2 + 3X − 10, g(X) = X3 + 2X2 − 5X + 2 ∈ Q[X]. The
steps are almost the same as when computing the gcd of two integers, but with a twist:

f(X) = 5g(X) + (−8X2 + 28X − 20)
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At this point we might want to say that gcd(f(X), g(X)) = 47
4 X − 47

4 = 47
4 (X − 1).

However observe that the much simpler polynomial X−1 divides both f(X) and g(X). In
order to have a unique answer when computing gcd’s, we will insist that the gcd be a monic
polynomial, i.e. that its leading coefficient be 1. Thus in this case gcd(f(X), g(X)) = X−1
and the extended form of the algorithm allows us to write this as a polynomial-linear
combination of f(X) and g(X):
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g(X).
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