
 

Overview of Modern Geometries 
 

‘Geometry’ means literally ‘measurement of the earth’, and is the oldest branch of mathematics.  

Today we recognize many different branches of geometry, many of which do not involve 

measurement at all, as they do not possess any notion of distance or angle.  Let’s begin with a 

survey of some of the many types of geometry available for consideration, together with some 

comments about the most classical geometry of all (and the one that, by tradition, we have come 

to emphasize), the geometry of Euclid. 

 

Geometries may be classified as discrete or continuous.  For example ℝ2, (the Euclidean plane) 

is continuous; ℤ2 (the set of integer lattice points in the Euclidean plane) is discrete.  A precise 

definition of a discrete space requires some topology; but intuitively, in a discrete space each point 

is separated from its nearest neighbours.  Likewise a geometry may be finite (i.e. having only 

finitely many points or lines or other objects) or infinite.  For example the Euclidean plane is 

infinite.  Every finite geometry is discrete, but not conversely (consider for example ℤ2 which is 

infinite but discrete). 

 

Geometries may be classified by dimension.  We have 2D geometry (two-dimensional, or plane 

geometry); 3D geometry; 4D geometry; etc.  We may be interested in geometry of any finite 

dimension (such as the 11 dimensions of modern string theory), or of infinite dimensions.  There 

are also geometries of fractional dimension, or of negative dimension, or of no particular 

dimension. 
 

Continuous plane geometries include the Euclidean plane (the high school plane geometry) and 

others such as the hyperbolic and elliptic planes.  Similarly we have Euclidean, hyperbolic and 

elliptic geometries of every finite dimension.  In particular hyperbolic 3-space is a good description 

of physical space in the vicinity of a large mass.  (OK, this statement is an oversimplification…) 
 

In every dimension we also have the notions of affine and projective geometry.  For example the 

Euclidean plane is simply the real affine plane (i.e. the affine plane constructed over the real 

numbers).  The real projective plane may be viewed as an extension of the Euclidean plane in 

which we add ‘points at infinity’.  We can construct geometries over any field of numbers; for 

example if we replace the real number system ℝ by the field 𝔽2 = {0,1} , we obtain an affine plane 

with four points and six lines (see Cederberg, pages 4 and 5), or a projective plane with 7 points 

and 7 lines (see Cederberg, page 11). 
 

The basic objects of affine and projective geometry are points, lines, planes, etc.  In the inversive 

plane, the basic objects are points and circles.  In inversive 3-space the basic objects are points 

and spheres. 
 

In algebraic geometry one considers as basic objects all point sets that can be described by 

polynomial equations.  Here the basic objects are points, curves, surfaces, etc.  For example in the 

plane, this would mean all curves defined by polynomials; for example  𝑥3 + 3𝑥𝑦2 = 𝑦5.  In 



analytic geometry one considers point sets defined by more general relations such as  

𝑥3 sin 𝑦 = 𝑒𝑥. 

 

In differential geometry one considers a more general notion of distance (or metric) than that of 

Euclidean space.  This subject requires calculus to perform such routine tasks as determining 

geodesics (paths of shortest distance, at least locally).  This is the language in which the theory of 

general relativity is written. 

 

So there are geometries whose basic objects are points and lines only.  There are geometries with 

points and lines and planes.  And geometries with points and circles.  Also geometries with points 

and curves.  And so on.  There are geometries without any points.  (These are known as pointless 

geometries.  No joke; but one wonders if those research pointless geometries have a hard time 

gaining respect, especially when searching for grant funding.) 

 

No one geometry is ‘correct’ or ‘incorrect’.  Geometry is an abstract mathematical pursuit, often 

(but not always) motivated by concrete physical problems; in any case one must distinguish 

abstract geometry from any physical system that it may be intended to describe.  An abstract 

description is at best an approximate or simplified (typically oversimplified) view of physical 

reality. 

 

It is widely assumed that the Euclidean geometry of high school is the simplest of all geometries.  

This belief is misguided, however; Euclidean geometry abounds with subtleties and 

misconceptions.  Popular questions arising in Euclidean geometry range in level of difficulty from 

elementary, to difficult, to unsolved (or unsolvable).  Here I offer illustrations to support this 

statement; and in many cases without justification—whenever the proof is beyond the scope of a 

course like this, I can provide references to anyone who is interested. 

 

 

 

A Sample of Problems in Euclidean Plane Geometry 
 

1. (Not too hard)  A typical elementary problem in the Euclidean 

plane is to show that the three altitudes of a triangle intersect: 

given a triangle 𝐴𝐵𝐶, consider the three lines 𝑟, 𝑠 and 𝑡 through 

each vertex to the opposite side.  Show that 𝑟, 𝑠 and 𝑡 are 

concurrent (i.e. they have a common point of intersection). 

 

 

 

 

 

 

2. (Hard)  There are many ways to decompose a rectangle into 

triangles of equal area; one such decomposition into 8 

triangles of equal area is shown on the right.  Show that it 

is not possible to decompose a given rectangle into an odd 

number of triangles of equal area. 

 

 



 

 

3. (Hard… and surprising… yet true!)  It is possible to decompose a closed ball of radius 1 in 

Euclidean space into five pieces which can be rearranged to form two balls of radius 1.  This 

is a theorem of Banach and Tarski.  (The original proof showed only that such a 

decomposition was possible using a finite number of pieces; later this was refined to five 

pieces.)  (To explain the terminology, let me remind you that the closed ball of radius 1 

centered at the origin in ℝ3 is {(𝑥, 𝑦, 𝑧) ∈ ℝ3 ∶  𝑥2 + 𝑦2 + 𝑧2 ≤ 1}.) 

 

Perhaps more surprising is the fact (also a theorem) that the analogous result in two 

dimensions is false: given a closed disk of radius 1 in the Euclidean plane, it is not possible 

to decompose the disk into a finite number of pieces which can then be rearranged to form 

two disks, each of the same size as the original. 

 

 

4. (Unsolved)  Let γ be a simple closed curve in the 

Euclidean plane (so γ does not cross itself; it can 

be drawn ‘without lifting one’s pencil’, i.e. it has 

no jumps).  Do there exist four points on γ which 

form the vertices of a square? 

 

 

 

 

 

 

 

5. (Incomputable in general)  Given a finite set of ‘tiles’ (called prototiles), assume that you 

have available an unlimited number of tiles of the same shape as the given prototiles.  Is it 

possible to tile the Euclidean plane using the resulting tiles?  In some cases the answer is 

easy, e.g. given a square as a prototile, the answer is ‘yes’; given a circular disk as a prototile, 

the answer is ‘no’.  In some cases the answer is difficult; there exist certain sets of prototiles 

that allow a tiling of a large region of the entire plane, but not the entire plane.  One might 

ask for an algorithm which, given an arbitrary set of prototiles as input, decides whether or 

not a tiling of the Euclidean plane is possible.  However, it has been proved that there is no 

such algorithm. 

 

Example #3 above (the Banach-Tarski Theorem) underscores my earlier claim that Euclidean 

geometry is strange in ways that may at first come as surprising.  Of course the decomposition of 

a ball into five pieces is not possible to perform on material objects.  (Otherwise we might be able 

to decompose a ball of gold and reassemble it into two balls, both as large as the original.  This 

suggests a get-rich-quick scheme.)  The Banach-Tarski Theorem is often referred to as a paradox; 

yet there is no contradiction to be found in it.  It does not violate conservation of mass, because it 

does not apply to physical objects, because of the intricate nature of the pieces required in such a 

decomposition.  The difficulty is much more fundamental than the graininess of physical matter 

(due to the finite size of individual molecules, atoms, and subatomic particles).  In fact, the same 

confusion arises without considering physical matter at all: the theorem does not even apply to 

subsets of physical space, owing to the intricate nature of the subsets involved.  These subsets are 



so intricate that they do not even have a well-defined volume; and so it does not contradict the 

familiar law of conservation of volume. 

 

As ‘paradoxes’ go, the Banach-Tarski Theorem is not too far removed from another result, which 

is actually elementary to prove: It is possible to decompose a unit ball in ℝ3 into infinitely many 

pieces (for example, take individual points) which can be reassembled to form two unit balls.  This 

result is less impressive than the Banach-Tarski Theorem only because the decomposition requires 

an infinite number of pieces.  Once again, this is impossible with physical objects; and 

conservation of volume is not violated because we are speaking of uncountably many pieces of 

volume zero, and uncountable sums are meaningless.  (That’s why every infinite sum mentioned 

in Calculus II had only countably many terms.) 

 

As evidence that the geometry of physical space is surprising, I point out that the triangles in our 

universe have angle sum not equal to 180°; the fact that the angle sum ≈ 180° is a good 

approximation only over small distances, and the error in this approximation is measurable for 

sufficiently large triangles.  This is a prediction of the general theory of relativity, and has been 

verified experimentally first in 1919, and (with greater accuracy) in 1959.  In fact, it is meaningless 

to separate physical space from time: it is only spacetime that has absolute meaning, and this is 

further evidence that the Euclidean description can never be more than a good approximation.  

Moreover the geometry of physical space differs also from the ideal Euclidean description on the 

smallest scales, at distances of approximately 10−33cm, where nothing is recognizable—even 

linear ordering of points.  To summarize, (i) Euclidean space is bizarre; (ii) the physical 

space(time) we live in is bizarre; and (iii) these two spaces (Euclidean space and the space we live 

in) are bizarre in very different ways. 

 

The difficulties we mention here arise primarily because the Euclidean plane is infinite (it has 

infinitely many points and infinitely many lines).  Many of the difficulties arising in geometry can 

be avoided, in fact, by starting with geometries that do not require infinitely many points. 


