
A Taste of Galois Theory

Evariste Galois (1811-1832) observed a very beauti-

ful connection between field theory and group the-

ory. Our priority is to see the beauty of this connec-

tion, which we will illustrate using a few examples.

Detailed proofs of the main results are not our high-

est priority, which (because of time constraints) will

be kept to a minimum.

Recall that a group is a set G with a single binary operation (which we will call

multiplication) satisfying three axioms:

(IDENTITY) There exists ι ∈ G satisfying gι = ιg = g for all g ∈ G.

(ASSOCIATIVITY) For all g, h, k ∈ G, we have (gh)k = g(hk).

(INVERSES) For every g ∈ G, there exists g−1 ∈ G such that gg−1 = g−1g = ι.

The order of a group G, denoted by |G|, is simply the number of elements in G. A subset

H ⊆ G is a subgroup of G (denoted by H 6 G) if H is also a group, using the same

operation as in G (restricted, however, to the elements of H). Note that a subset of G is

a subgroup iff it contains the identity element, and is closed under multiplication and the

the taking of inverses. If G is a finite group (|G| <∞) then by Lagrange’s Theorem, every

subgroup H 6 G has order |H| dividing |G|.
For our interests, the foremost examples of a group are permutation groups, and

automorphism groups of fields.

Permutation Groups. Given a set Ω, a permutation of Ω is a bijection from Ω to itself.

The set of all permutations of Ω forms a group under composition, called the symmetric

group of Ω. This group is denoted Sym Ω. A permutation group on Ω is a subgroup of

Sym Ω.

If Ω is finite, we often choose to label its elements using the first n positive integers:

Ω = {1, 2, . . . , n}. We also abbreviate Sn := Sym{1, 2, . . . , n}. Permutations of 1, 2, . . . , n

are written in cycle notation, e.g. σ = (1 5 4)(2 6) ∈ S6 is the permutation

σ : 1 7→ 5 7→ 4 7→ 1; 2 7→ 6 7→ 2; 3 7→ 3.
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In this case σ−1 = (1 4 5)(2 6); and if τ = (2 3 6 4) ∈ S6 then

στ = (1 5 4)(2 6)(2 3 6 4) = (1 5 4 6)(2 3), τσ = (2 3 6 4)(1 5 4)(2 6) = (1 5 2 4)(3 6).

(Following the Andersen-Feil textbook, we use ‘right-to-left’ composition of permutations.

Many other textbooks, however, follow the convention of ‘left-to-right’ composition.) The

fact that σ and τ do not commute (στ 6= τσ) is evidence that S6 is nonabelian. Note that

|Sn| = n!; for example there are 3! = 6 permutations of {1, 2, 3}:

S3 = 〈(1 2 3), (1 2)〉 = {ι, (1 2 3), (1 3 2), (1 2), (1 3), (2 3)};

〈(1 2 3)〉 = {ι, (1 2 3), (1 3 2)};

〈(1 2)〉 = {ι, (1 2)};

〈(1 3)〉 = {ι, (1 3)};

〈(2 3)〉 = {ι, (2 3)};

〈ι〉 = {ι}

where ι = () is the identity permutation x 7→ x for all x ∈ {1, 2, 3}; and 〈g1, g2, . . . , gk〉
is the subgroup of G generated by g1, g2, . . . , gk ∈ G, i.e. the set of all group elements

expressible as products of the generators g1, g2, . . . , gn and their inverses.

Automorphism Groups of Fields. Let F be a field. An automorphism of F is a

bijection σ : F → F such that

σ(a+ b) = σ(a) + σ(b) and σ(ab) = σ(a)σ(b)

for all a, b ∈ F . The set of all automorphisms of F is a group under composition, denoted

by AutF . We may view AutF as a subgroup of SymF . For example, we have seen that

AutQ = {ι} and AutR = {ι} where ι(x) = x for all x (the identity automorphism); also

AutC contains at least two automorphisms ι, τ where τ(z) = z, the complex conjugate

of z. (Actually AutC is very large; we will not take time here to digress on automorphisms

of C.) Also

AutFpr = 〈σ〉 = {ι, σ, σ2, . . . , σr−1},

a cyclic group of order r generated by σ : a 7→ ap; thus σj(a) = ap
j

.

Permuting Roots of Polynomials. There is an important connection between the two

classes of groups described above. Consider a polynomial (let’s assume it’s monic) with

rational coefficients:

f(t) = tn + an−1t
n−1 + · · ·+ a2t

2 + a1t+ a0 ∈ Q[t].
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Suppose that α is a root of f(t) in some extension field E ⊇ Q, and let σ ∈ AutE. Recall

that σ(a) = a for all a ∈ Q, so that

f(σ(α)) = σ(α)n + an−1σ(α)n−1 + · · ·+ a2σ(α)2 + a1σ(α) + a0

= σ(αn) + an−1σ(αn−1) + · · ·+ a2σ(α2) + a1σ(α) + a0

= σ(αn) + σ(an−1α
n−1) + · · ·+ σ(a2α

2) + σ(a1α) + a0

= σ
(
αn + an−1α

n−1 + · · ·+ a2α
2 + a1α+ a0

)
= σ(0)

= 0,

i.e. σ(α) is also a root of f(t). In other words, σ takes roots of f(t) to roots of f(t); and

since σ is bijective, σ permutes the roots of f(t). A slight generalization of this argument

gives the following:

Theorem 1. Let E ⊇ F be an extension field, and let f(t) ∈ F [t]. Let σ be any

automorphism of F such that σ(a) = a for all a ∈ F . Then σ permutes the roots (if

any) of f(t) in E.

Now suppose that E ⊇ F is an extension in which f(t) splits into linear factors as

f(t) = (t− α1)(t− α2) · · · (t− αn), αj ∈ E.

(For this we can take E = F , the algebraic closure of F . However, a smaller extension of

F is always enough: we could get by with a finite extension F [α1, . . . αn] ⊇ F .) In this

case, if σ ∈ AutE fixes every element of F , then σ permutes α1, . . . , αn; essentially this

gives and element of Sn.

A familiar special case is the following: Let f(t) ∈ R[t]. Then complex conjugation

permutes the complex roots of f(t); in particular, for every root α ∈ C of f(t), either

• α ∈ R, in which case t− α is a real linear factor of f(t); or

• we obtain a pair of complex conjugate roots {α, α}. In this case f(t) has an irreducible

real quadratic factor (t− α)(t− α) = t2 − bt+ c ∈ R[t] where b = α+α and c = αα.

From Theorem 1 we obtain

Corollary 2. Let E ⊇ Q be an extension of degree n. Then |AutE| 6 n.
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To prove Corollary 2, we require α ∈ E such that Q[α] = E. Such an element exists by

another result (the Theorem of the Primitive Element) that we will not take time to prove

now. Let f(t) be the minimal polynomial of α over Q. We may factor

f(t) = (t− α1)(t− α2) · · · (t− αn)

where α1 = α; without loss of generality α1, . . . , αk ∈ F where 1 6 k 6 n. If σ ∈ AutF

then by Theorem 1, σ(α) ∈ F is a root of f(t), so σ(α) = αj for some j ∈ {1, 2, . . . , k}.
Each choice of j determines a unique automorphism of F given by

σj
(
a0 + a1α+ a2α

2 + · · ·+ an−1α
n−1
)

= a0 + a1αj + a2α
2
j + · · ·+ an−1α

n−1
j

so AutF = {σ1, σ2, . . . , σk} of order k 6 n. This proves Corollary 2.

Separability and Simple Extensions

When working with a finite field extension E ⊇ F , it is useful (as seen in Corollary 2) to

have a single element α ∈ E such that E = F [α], i.e. α ∈ E is algebraic of degree n over F .

So it is natural to ask: can we always assume that such an element exists? Fortunately

for us, the answer is: yes, usually. Actually, in most cases we find that such an element

α is hard to avoid: typically, almost every element of E has the properties required! For

example, if E = Q[
√

2,
√

3] then E = Q[α] where

α = a+b
√

2+c
√

3+d
√

6, a, b, c, d ∈ Q

as long as no more than one of b, c, d is zero; so a ‘randomly chosen’ element α ∈ E works;

in particular, a relatively simple choice is α =
√

2+
√

3.

An extension E ⊇ F is simple if E = F (α) for some α ∈ E. The extension E ⊇ F is

separable if every element α ∈ E is a simple root of its minimal polynomial over F . We

will use

Theorem 3 (Theorem of the Primitive Element). Every finite separable ex-

tension E ⊇ F is simple: there exists α ∈ E such that E = F [α].

The proof of Theorem 3 is omitted. Recall that separability holds automatically in char-

acteristic zero; also for finite fields (see the recent handout ‘Some Consequences of Field

Characteristic’ for details) which covers almost all extensions we study in this course. So on
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first exposure to this material, you should feel free to ignore all references to separability.

A more complete version of Corollary 2 is the following:

Corollary 4. Let E ⊇ F be a separable extension of degree [E : F ] = n, and

consider G 6 AutE consisting of all σ ∈ AutE such that σ(a) = a for all a ∈ F .

Then |G| 6 n.

Of course if F is the prime subfield of E (i.e. Q or Fp) then every automorphism fixes

every element of F , so the additional hypothesis holds automatically, and |AutE| 6 n in

this case.

We are most interested in those extensions E ⊇ F attaining the upper bound of

Corollary 3; these are Galois extensions. Before indicating which extensions have this

property, we consider some examples.

Example 1: A Cyclic Extension of Degree 3

Let f(t) = t3 + t2 − 2t− 1 ∈ Q[t]. We have seen that f(t) is irreducible over Q. Let α ∈ C
be a root of f(t), so that

α3 = 1 + 2α− α2,

α4 = α+ 2α2 − α3 = −1− α+ 3α2,

α5 = −α− α2 + 3α3 = 3 + 5α− 4α2,

α6 = 3α+ 5α2 − 4α3 = −4− 5α+ 9α2,

etc. It is straightforward to verify that β = α2 − 2 is also a root of f(t):

f(β) = β3 + β2 − 2β − 1

= (α2−2)3 + (α2−2)2 − 2(α2−2)− 1

= (α6−6α4+12α2−8) + (α4−4α2+4)− 2(α2−2)− 1

= α6 − 5α4 + 6α2 − 1

= 0

using the relations above. Now it is not hard to find a third root of f(t): exactly the same

reasoning shows that another root must be given by

γ = β2 − 2

= (α2 − 2)2 − 2

= α4 − 4α2 + 2

= 1− α− α2.
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Alternatively, given that α and β = α2 − 2 are roots of f(t), we could have used the fact

that the three roots of f(t) satisfy

α+β+γ = −1; αβ+αγ+βγ = −2; αβγ = 1

to solve for γ = −1− α− β = 1− α− α2. Of course the same reasoning could be applied

again: since γ is a root of f(t), so is

γ2 − 2 = (1− α− α2)2 − 2

= −1− 2α− α2 + 2α3 + α4

= −1− 2α− α2 + 2(1+2α−α2) + (−1−α+3α2)

= α.

This should not be a surprise; since there are only three roots, eventually the map x 7→
x2 − 2 had to bring us back to the same root we started with.

The field E = Q[α] has three automorphisms: AutE = {ι, σ, σ2} where σ : E → E is

defined by

σ
(
a+ bα+ cα2

)
= a+ bβ + cβ2

= (a−2b+3c)− cα+ (b−c)α2

for all a, b, c ∈ Q. The map σ cyclically permutes α 7→ β 7→ γ 7→ α. In cycle notation we

may write this as the 3-cycle (αβ γ) (although most textbooks reserve the cycle notation

for permutations of 1, 2, . . . , n only). The fact that σ is an automorphism of E follows

from our work above. To see that these are the only automorphisms of E, suppose that

ρ : E → E is an automorphism. By Theorem 1, ρ(α) ∈ {α, β, γ}. If ρ(α) = α then

ρ(a+ bα+ cα2) = a+ bρ(α) + cρ(α)2 = a+ bα+ cα2

so ρ = ι, the identity automorphism. If ρ(α) = β, then

ρ(a+ bα+ cα2) = a+ bρ(α) + cρ(α)2 = a+ bβ + cβ2

so ρ = σ. Similarly, if ρ(α) = γ, then ρ = σ2.

The only subfields of E are Q and E itself; this is because for any intermediate field

K we have

[E : K][K : Q] = [E : Q] = 3
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so either [E : K] = 1 or [K : Q] = 1. The subfields of E are in one-to-one correspondence

with the subgroups of G = AutE = 〈σ〉:
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In general the correspondence takes a subgroup H 6 G to its fixed field FixH = {a ∈
E : σ(a) = a for all σ ∈ H}. Going in the other direction, we map a subfield K ⊆ E

to the subgroup GK = {σ ∈ G : σ(a) = a for all a ∈ K}. This correspondence reverses

inclusion: if K1 ⊇ K2 are subfields of E, then H1 6 H2 for the corresponding subgroups

of G. Moreover in this case, the extension degree coincides with the subgroup index:

[K1 : K2] = [H2 : H1].

Even more is true: double lines on the right, which indicate normality of subgroups,

correspond to double lines on the left, representing normality of field extensions (which we

have not defined yet). Further definitions and results, are postponed until after another

example of a field extension.

Example 2: A Noncyclic Extension of Degree 3

Let f(t) = t3 − 2 ∈ Q[t]. Again, this is irreducible over Q. Let θ = 3
√

2, the unique real

root of f(t); and K = Q[θ], a cubic extension of Q. Then f(t) factors into irreducible

factors in K[t] as

f(t) = t3 − 2 = (t− θ)(t2 + θt+ θ2).

Note that the discriminant of the quadratic factor is −3θ2 < 0; and since K ⊂ R, this

means that the quadratic factor is in fact irreducible over K. Any automorphism of K must

map θ 7→ θ (since θ is the only root of f(t) in K) so it must map a+bθ+cθ2 7→ a+bθ+cθ2

for all a, b, c ∈ Q; and this is the identity automorphism of K. So AutK = {ι}, in contrast

to what happened in Example 1 above.

The defect of K is that it is not large enough to contain all the roots of f(t): it is not

a splitting field for f(t). A splitting field for a polynomial f(t) is an extension field over

which f(t) splits into linear factors.
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A splitting field for our polynomial f(t) is given by the larger extension E = K[ω] =

Q[θ, ω] where ω = e2πi/3 = 1
2

(
−1 + i

√
3
)
. In E[t] we have

f(t) = (t− θ)(t− ωθ)(t− ω2θ).

Now G = AutE contains an automorphism τ given by complex conjugation. Here

τ(ω) = ω = ω2 = −1− ω

since the minimal polynomial of ω over Q is t2 + t + 1. Since θ ∈ R we have τ(θ) = θ.

By Theorem 1 there is also an automorphism σ : E → E taking θ to ωθ. We may assume

that σ takes ωθ to the third root ω2θ; otherwise replace σ by στ . Now in cycle notation

the three roots of f(t) are permuted by σ and τ as

σ = (θ ωθ ω2θ); τ = (ωθ ω2θ).

These two permutations behave just like (1 2 3) and (2 3) which generate S3. We obtain

G = AutF = 〈σ, τ〉 ∼= S3.

Just as G ∼= S3 has six subgroups, F has exactly six subfields and a one-to-one correspon-

dence between subgroups of G and subfields of F is shown by
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The Fundamental Theorem of Galois Theory

As intimated by our examples, the Fundamental Theorem of Galois Theory gives a bijective

correspondence between the intermediate fields of a field extension E ⊇ F , and the group

of automorphisms of the field extension. This correspondence is most readily described if

the extension satisfies three conditions:

• We assume n = [E : F ] is finite, and in particular the extension E ⊇ F is algebraic.

While much of the theory generalizes to extensions of infinite degree, we will not

concern ourselves with these complications.
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• The extension E ⊇ F is separable. This means that every element a ∈ E is a simple

root of its minimal polynomial over F . Recall that this condition automatically holds

for fields of characteristic zero; it also holds whenever E and F are finite. Typically,

we implicitly assume the extension is separable, and not worry about it.

• The extension E ⊇ F is normal . This means that for every a ∈ E, the minimal poly-

nomial of a over F splits into linear factors over E. In other words, every polynomial

f(t) ∈ F [t] of degree k, irreducible in F [t] but having a root in E, actually has k (dis-

tinct) roots in E. Equivalently, E is the splitting field of some irreducible polynomial

f(t) ∈ F [t], i.e. E = F [α1, α2, . . . , αn] where f(t) = (t−α1)(t−α2) · · · (t−αn) in E[t].

As we saw in Example 2, if this condition is not fulfilled, then the remedy is to further

extend E to a finite extension which is normal.

An extension E ⊇ F satisfying the three conditions above (i.e. a finite normal separable

extension) is called a Galois extension.

An automorphism σ ∈ AutE such that σ(a) = a for all a ∈ F is called an F -

automorphism of E. The set of all F -automorphisms of E form a subgroup of AutE

denoted by G(E/F ) 6 AutE. Corollary 4 has a more complete version, given by

Theorem 5. Let E ⊇ F be a separable extension of degree n = [E : F ]. Then

|G(E/F )| 6 n; and equality holds iff the extension E ⊇ F is normal (and hence

Galois).

Let us abbreviate G = G(E/F ). We assume equality holds in Theorem 5. In this case,

G = G(E/F ) is called the Galois group of the extension E ⊇ F . To every intermediate

field K, E ⊇ K ⊇ F , we associate the group G(E/K) of all K-automorphisms of E; and to

every subgroup H 6 G we associate the intermediate subfield FixH = {a ∈ E : σ(a) = a

for all σ ∈ H}. By the Fundamental Theorem of Galois Theory , we have a bijective

correspondence, called the Galois correspondence:{
intermediate fields

between E and F

}
←→

{
subgroups of

G = G(E/F )

}
given by

K 7−→ G(E/K)

Fix(H) ←−7 H

Given subgroups H1, H2 6 G and corresponding intermediate subfields K1,K2, we have

H1 6 H2 ⇔ K1 ⊇ K2,
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i.e. the Galois correspondence is order-reversing. Assuming containment as in the previous

line, index of subgroups equals degree of extension:

[H2 : H1] = [K1 : K2]

and normality is preserved: H1 is normal in H2, iff K1 is a normal extension of K2.

Moreover in the latter case of normality,

G(K1/K2) ∼= H2/H1 .

Example 3: Quadratic Extensions

Unlike cubic extensions, which are not necessarily Galois (as we noted in the previous

examples), quadratic separable extensions of fields are always Galois. So if E ⊇ F ⊇ Q is

a tower of fields with [E : F ] = 2, then there is necessarily an automorphism τ ∈ AutE of

order two (τ2 is the identity) such that τ(a) = a for all a ∈ F , and G(E/F ) = 〈τ〉 = {ι, τ}.
This corresponds to the fact (from group theory) that subgroups of index 2 are necessarily

normal.

Example 4: Finite Fields

Let q = pr where r > 1 and p is prime. There is a unique field Fq of order q, and the

extension Fq ⊇ Fp is Galois. Its Galois group is

G = G(Fq/Fp) = 〈σ〉 = {ι, σ, σ2, . . . , σr−1}

where σ : Fq → Fq is given by σ(a) = ap, so that σj(a) = ap
j

. Since G is cyclic, the

extension Fq ⊇ Fp is called cyclic.

Abel’s Theorem

Niels Abel (1802-1829) used Galois Theory to an-

swer one of the most classical problems of mathe-

matics: For which polynomials f(t) can one express

the roots of the polynomial in terms of the coef-

ficients using only the elementary field operations

of addition and subtraction, multiplication an divi-

sion, and powers or roots? While this was known to
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be possible for polynomials of degree at most 4, the case of degree 5 remained elusive

until Abel’s Theorem showed that in general, such a solution does not exist. For example,

consider the irreducible polynomials1

f1(t) = t5 + t4 − 4t3 − 3t2 + 3t+ 1

f2(t) = t5 − 5t+ 12

f3(t) = t5 − 2

f4(t) = t5 + 20t+ 16

f5(t) = t5 − 4t+ 2

Of these five examples, the first three have roots expressible in terms of basic field op-

erations including radicals. The corresponding Galois groups, as subgroups of S5, are

isomorphic to

〈(1 2 3 4 5)〉 (a cyclic group of order 5);

〈(1 2 3 4 5), (2 5)(3 4)〉 (a dihedral group of order 10);

〈(1 2 3 4 5), (1 2 4 3)〉 (a Frobenius group of order 20);

〈(1 2 3 4 5), (1 2 3)〉 ∼= A5 (the alternating group of order 60);

〈(1 2 3 4 5), (1 2)〉 ∼= S5 (the symmetric group of order 120)

respectively. The first three of these groups are solvable, whereas the last two are non-

solvable; this accounts for the statements above concerning roots of the corresponding

polynomials. By the earliest results of Galois theory, every irreducible f(t) ∈ Q[t] of de-

gree 5 has a Galois group G containing a 5-cycle; and the five examples above illustrate

all possible cases for G that can arise.

1 See D. J. H. Garling, A Course in Galois Theory, Cambridge Univ. Press, 1986.
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