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Complex Numbers

The field of complex numbers is the extension C D R consisting of all expressions z = x+y1
where z,y € R and i = v/—1. We refer to z = Re(z) and y = Im(z) as the real part and
the imaginary part of z, respectively. (Note: It is y, not yi, which we call the imaginary

part of z; thus the real and imaginary parts of z are both real.)

Y1 oz = x4yl

In this context, ‘complex’ does not mean ‘complicated’; rather it refers to the fact that z
has two parts (the real and the imaginary part), just as a sports complex has more than
one part (typically a gym, a pool, a track, etc.) and the vitamin B-complex consists of
several separate compounds (vitamins B-1, B-2, B-3, etc.); actually the complex numbers
simplify our understanding of mathematics and physics. Many properties of real numbers

are best understood using complex numbers.
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““The shortest path between

two truths in the real domain

passes through the complex domain.”

Real Real
J Had d, 1865-1963

Problem Answer acdues Hadamar

Hadamard’s Principle

Soon enough we will encounter examples of Hadamard’s Principle.
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Complex numbers are added just like vectors in R?, by adding separately their real
and imaginary parts. For example, we show the parallelogram law of addition for the
statement (2+3i) + (5+1i) = 7-+4i:

T+4

Using the identity
e = cosf + isinf
known as DeMoivre’s Theorem, complex numbers may be written also in polar form,;
we have z = z + yi = re'® where x = rcosf and y = rsiné, which allows us to convert
between rectangular and polar form. In general, the rectangular coordinates x,y of any
complex number are unique; but the polar coordinates r, # are not. One standard choice
is given by r = \/m and 0 < 0 < 27 which determines 6 uniquely as long as z # 0;
in this case r is the modulus of z, denoted r = |z|; and 0 is the argument of z, denoted
0 = arg z. Note that the modulus |z| of a complex number z is just the distance from z
to the origin. This coincides with the meaning of |x| for any real number z: the absolute

value of x is also the distance from z to the origin.
Example 1. Convert 1+¢ to polar form.

Solution. r = [1+i| =12+ 12 = /2 and tanf = 1/1 =1 so § = arg (1 + i) = w/4;
thus

1440 = V2% .

i - 02 = 1+i=+/2e"/4

1
\7r/4

)

Example 2. Convert 2’5 to rectangular form.

2



Solution. 2e'3 = 2 cos Z4+2isinf =1+ iv3.

i3 . 2= 1+iV/3 = 2¢im/3

Arithmetic operations with complex numbers may be performed using either their
rectangular forms or their polar forms, although rectangular forms are generally more
suitable for addition and subtraction; as we shall see, polar forms are often more suitable

for multiplication and division, or raising to powers.
Example 3. (24 3i)(b+1i) =10+ 3(—1) +2i + 15i = 7+ 17i.

243i _ 243i  5—i _ 13+13i _ 1 | i
Example 4. T50 =500 55 = 51 —a2 12

To provide a geometric interpretation for the multiplication of complex numbers (anal-
ogous to the parallelogram law for addition of complex numbers), we use the polar form.
If z=re? and w = se’®, then zw = rse’®t®); thus the magnitude of zw is the product

of the magnitudes (or moduli) of z and w; and the argument of zw is the sum of the

arguments of z and w.

2w = rset0+e)
[ ]

.rs Doy

Example 5. (141)7 = (v2e™/4)7 = 8/2¢Tmi/4 = 8v/2 5 (1—i) = 8 — 8i. This is much

faster than using the Binomial Theorem to expand with rectangular coordinates, viz.:
(1+4)" =147 —21-35i+35+21i —7—i = 8 — 8i.
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For every positive integer n, there are n complex roots of the equation 2" = 1, called

the n-th roots of unity. Note that these all have the form
Ck:ekm/”:cos%”—i—isin’%, k=0,1,2,...,n—1

where ¢ = ¢™/™. These numbers form the vertices of a regular n-gon inscribed in the unit
circle |z] = 1 in the complex plane. More generally, every nonzero complex number has
exactly n n-th roots, and these roots form the vertices of a regular n-gon. Indeed, let a
be any nonzero complex number, and write a = re*? in polar form where r = |al; then the
roots of 2" = a are

pl/meFkm)i/n — p1/n qoq Otkm ir'/™ sin 9EkT k=0,1,2,...,n—1

n )
and these form the vertices of a regular n-gon inscribed in the circle |z| = r/™.

The complex conjugate of any complex number z, denoted Z, is obtained by re-
flecting z in the real axis; this preserves the real part and the modulus; and it changes the

sign of the imaginary part and the argument:

yi- o2 =TtYl = ret?
T y
e
0~ Js 7
._.‘T y
e : —if

Z=x—yr=re

Observe that for z = x+yi we have 2z = (v +yi)(x—yi) = 22 +y% = |2|?; thus |z] = V2Z.
Also note that 2z +w =Z+w and zw = zZ-w for all z,w € C. Complex conjugation z + Z
is an automorphism of C: it is bijective, and preserves the field operations. The real and

imaginary part of z = x+yi are expressible as
Re(z) = 1 (2 +2); Im(z) = & (2 — z).

Functions of the form f : R — R are often understood in terms of their graphs
{(x, f(x)) : = € R} C R?; indeed a function f is often identified with its graph. This
description is more problematic for functions f : C — C, where the graph {(z, f(z)) : z €
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C} is typically a surface in C?> ~ R*. Such a graph requires two real coordinates for the
domain and another two real coordinates for the range. In order to gain insight into the
behaviour of such functions, we often rely on cross sections or projections of the graph,
rather than the full graph itself.

For example one may plot u(z,y) = Re(f(z)) = Re(f(x+yi)) and v(x,y) = Im(f(z))
= Im(f(z+yi)) as two separate surfaces in R3, then try to put these two pictures together
to get an understanding of f itself. Or one may try to illustrate u(z,y) and v(z,y) using
their contour plots in the z,y-plane (using a technique studied Calculus III for studying
functions of the form u = u(x,y) or v = v(x,y)). In our proof of the following result, we
will use a different approach: simply consider the image of a circle |z| = R in the z-plane
(i.e. the x,y-plane) under the transformation w = f(z).

Fundamental Theorem of Algebra. Every polynomial f(z) € C[z] of degree

n > 1 has a root (also called a ‘zero’) r € C.

This says that the field of complex numbers is algebraically closed and as the name implies,
it is a cornerstone of modern algebra. Gauss first proved this result as a graduate student
in 1799, although he omitted some of the ideas of the proof. Today several proofs are
available, including one often seen in our Math 4230 (Complex Analysis) course. The
proof we give here is topological in nature; and although it relies at one point on intuition,
the main argument is so accessible that we feel that our readers will forgive our heuristic
approach.

To first get an idea of how the proof works, first consider the example the monomial
function f(z) = 23. Writing z = Re® we see that w = f(z) = R3e"? so that for z-
values lying on a fixed circle of radius R centered at 0, corresponding w-values lie on a
circle of radius R? centered at 0; and as z moves around the circle |z| = R once in the
counter-clockwise direction, corresponding w-values move counter-clockwise around the
circle |w| = R3 three times in the counter-clockwise direction. We illustrate with the case

R=2:
w-plane

z-plane /




More generally for any monomial of the form w = f(z) = 2™, for every time z goes
once around the circle |z| = R in the counter-clockwise direction, w goes n times around

the circle |w| = R™ in the counter-clockwise direction.

Now consider the more typical example f(z) = z3—4z—1. If |z| = R is large then
f(2) is dominated by its leading term 23 and so f(z) =~ 23. Consider for example the case

R=05:
z-plane w-plane

6 f 1

50 1 150

(The reason that the image is not a perfect circle is that f(z) is only approzimately 23.) On
the other hand if |z| = R is very small, the constant term —1 dominates and f(z) ~ —1.

Consider the image of the circle |z| = 0.1 for example:

z-plane w-plane

03 f

-03 0 -02 -4l l)j\ 02 03 = \j/ 0 1

-02

-03

The point is that as |z| = R shrinks from 5 to 0.1, the image curve in the w-plane is forced
to pass through the origin. When it does, there must be a z-value with the corresponding
magnitude R between 0.1 and 5, such that f(z) = 0. What does the image of the circle

|z| = R look like in the w-plane for these intermediate values of R? Here are a few
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examples:

w-plane w-plane w-plane w-plane

2
. /—\ (_\;
1
1
w 9 1 2 -3 -2 - 2 - -2 -

-1

for |z] = R=10.1 for |z = R=0.4 for |z] = R=0.7 for |z] = R=1.0

w-plane w-plane w-plane

10

-10

for |z = R=1.5 for |z] = R=2.5 for |z] = R=5.0

In fact with a little more fine tuning we can find the values of R (correct to three decimal

places) for which the curve in the w-plane actually passes through the origin:

w-plane w-plane w-plane
o : s
10
1
5
5

for |zl = R=0.254  for |2| = R = 1.861 for |[z| = R=2.114

So in fact f(z) has three zeroes in C, with magnitudes as listed above. (One may verify

that f(z) has in fact three real zeroes, namely —1.861, —0.254 and 2.114, correct to three
decimal places.)

Finally, here is a proof of the Fundamental Theorem of Algebra: We may suppose

f(z) = 2"+ ap_12"" 1+ -+ a1z + ag where ag,a1,...,a,_1 € C. (If f(2) is not monic
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then divide f(z) by its leading coefficient; the resulting polynomial will be monic and it
will have the same zeroes as f(z).) We may also assume ag is nonzero; otherwise f(0) =0

and we are done. Let M be the maximum of the numbers
1, 2nlag|, 2n|a1], ..., 2n|an—1|.

Thus 1 <M < M? < M3 < -+ also |ag| < % which implies that

n

M
k| M* < o for k=0,1,2,...,n—1.
n

We will show that the approximation f(z) ~ z" for |z| = M in the following strict sense:
if |2| = M then |f(2) — 2| < 24~. The geometric meaning of this formula is that 2" is
closer to f(z) than it is to zero. This means that as z goes around the circle |z| = M
once counterclockwise, 2z must go around the origin n times counter-clockwise; and since
w = f(z) stays close to 2", it must also go around the origin n times. It is easy to check
that the required bound holds:

|f(Z) - Zn| = |a0 +aiz+ - +an_1zn—1|
< ao| + |arz] + -+ - + |an_12" "}
= |a0| + ‘CL1’M—|—---_|_ ‘an—lan_l

M" M" M"
St o Tty

— .M
=N5,
M™
2

as claimed.

If |z| = R where R is sufficiently large, say R = M as above, the corresponding values
of w = f(z) lie on a curve which ‘winds around’ the origin. As |z| = R shrinks, values of
w = f(z) approach the constant term ay which is nonzero; and in the limit when z = 0, the
corresponding w-value is just the point f(0) = ag which does not wind around the origin at
all. By continuity, there must be an intermediate value of R between 0 and M, for which f
maps the circle |z] = R to a curve in the w-plane which passes through the origin; in other
words f(z) = 0 for some z € C such that |z| = R. The continuity argument, similar to the
Intermediate Value Theorem learned in Calculus I, can be made precise using topological
arguments; but our heuristic version of the proof should suffice for most casual readers.

If f(z) € C has a zero r € C then we can factor f(z) = (z — r)g(z) where degg(z) =
n—1. Assuming n > 2, we may repeat the argument to obtain a linear factor of g(z);

continuing this process we eventually factor f(z) into n linear factors:
fzy=alz—r)(z—=712)---(z—1pn), a,r1,ra,...,r, € C.
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Corollary. Every real polynomial f(X) € R[X] factors into linear and quadratic

factors.

Proof. Let f(X)=X"4+a, 1 X" '+ --+a; X + ap where ag,ay,...,a,_1 € R. (Again
there is no loss of generality in assuming f(X) is monic.) By the Fundamental Theorem

of Algebra there exist r1,79,...,7r, € C such that

fX) = (X =r)(X =r2)- (X =)

Since the coefficients of f(X) are real, we have f(X) = f(X) and so using the properties

of complex conjugation,

(X = TD(X =72) -+ (X =) = (X = 10)(X = r2) -+ (X = 7).

This means that the complex numbers 71, 75, ..., 7, are the same as r{,rs,...,r, listed
in some order. In particular the complex zeroes ry,rs,...,r, of f(z) are of two possible
types:

(i) real zeroes satisfying 7 = ri; and

(ii) pairs of non-real zeroes {rj,7;} where r ¢ R.

After reordering the zeroes in a different order if necessary we may assume that the non-real

zeroes of f(X) are r1,771,...,7m, 7 and the real zeroes are rop,11,...,7, S0 that
J(X) = (X =r)(X =71) - (X = 1) (X =T (X = romqr) -+ (X = 7).
For k =1,2,...,m we have
(X —r) (X —7%) = X% — (rp+70) X + 1175 = X2 — 2Re(rp) X + |ri)* € R[X]

and clearly the remaining factors X — ro,41, ..., X — 17, are also real. 0]

The latter result is a good example of Hadamard’s Principle: We understand that
every real polynomial factors into linear and irreducible quadratic factors over R, since
these factors correspond to the real zeroes and the pairs of non-real zeroes in C, respectively.
This is a result about the real numbers, which we have no hope of understanding without

the complex numbers.



Another instance of Hadamard’s Principle is the following: Let A, B € R. Then

cos(A+B) + isin(A+B) = ¢/ATE)
_ (iAB

= (cos A + isin A)(cos B + isin B)
=cosAcosB +icosAsin B + isin A cos B — sin A sin B.

Comparing real and imaginary parts on both sides, we conclude that

cos(A + B) = cos A cos B — sin Asin B,
sin(A + B) = sin Acos B + cos Asin B.

These formulas arise frequently in trigonometry over the real numbers, and are useful in
Calculus I; and although there are several ways to derive these formulas, there is no proof
shorter than the one we have given using complex numbers.

Here is yet another demonstration of Hadamard’s Principle arising in number theory:
Example 6. Express the number 6161 as a sum of two integer squares.

Solution. Note that 6161 = 61-101 where it is possible by mere inspection to express each
factor as a sum of two squares: 61 = 52 + 62 and 101 = 10% + 12. Since 61 = |2|?> and

101 = |w|? where z = 5 + 6i and w = 10 + 4, we have 6161 = |z|?|w|? = |zw|* where
zw = (5+69)(10 +7) = 44 + 651.

This gives a solution 6161 = |zw|? = 442 + 65°.
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