
Free Groups
(Handout January 14, 2009)

Rather than begin with the definition of a free group, let’s begin with some examples. The
free group on two generators x and y, denoted 〈x, y〉, has as its elements all the (finite)
words in x and y. By a word in x and y, we mean a finite product of powers of x and y.
Whenever two powers of x are juxtaposed, we simplify using the rule xixj = xi+j (here
i, j ∈ Z); similarly for powers of y. Furthermore x0 = y0 = 1 is the identity. No other
simplification is possible in a free group. Consider for example the product of x2y−3xy−2

with y2x−4y−1:

(x2y−3xy−2)(y2x−4y−1) = x2y−3xx−4y−1 = x2y−3x−3y−1.

The inverse of x2y−3xy−2 is y2x−1y3x−2. It is not hard to see that 〈x, y〉 is a group. This
group is generated by x and y, which are independent symbols (hence ‘free’, meaning that
there are no relations between x and y).

For any set X (finite or infinite), we similarly construct the free group on X. This
group, denoted by 〈X〉, consists of all words in the elements of X (these being finite
products of powers of elements of X). Here is an example of a computation in 〈x, y, z〉:

(y−1zy2x−1y)2(z−1yx−1y)−1 = (y−1zy2x−1y)(y−1zy2x−1y)(y−1xy−1z)

= y−1zy2x−1zyz.

The free group on one generator is infinite cyclic:

〈x〉 = {. . . , x−2, x−1, 1, x, x2 , x3, . . .}.

Evidently 〈X〉 is abelian iff |X| � 1. The case |X| = 0 gives the trivial group: 〈∅〉 = {1}.
As straightforward as this general construction is, it is notable for several reasons:

• It provides an early example of a class of groups constructed not from numbers,
matrices, or functions, but in a purely formal manner.

• Some of our earliest examples of fundamental groups may be identified (up to iso-
morphism) as free groups. Indeed if X = R2 �{P1, P2, . . . , Pn}, where P1, . . . , Pn

are distinct points in the plane, then π1(X) is a free group on n generators.

• It provides the starting point for describing the more general notion of group
presentations (specification of groups using generators and relations).
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As simple and natural as the construction of free groups appears, already we encounter
several interesting features. In particular, it is true (but not obvious) that every subgroup
of a free group is free. To prove this or any other substantial facts regarding free groups,
the construction we have described above is not very suitable. However we are about to
present the actual definition of a free group, which is suitable for proving basic facts about
free groups.

To understand this point, let me draw an analogy with the system of real numbers.
We learn at an early age how to represent real numbers as decimals. But to understand
any of the essential features of R (from the most basic algebraic properties, such as the
field axioms, to the more subtle properties used in modern real analysis) one appeals to
a definition of R as a completion of Q, i.e. real numbers are represented using Cauchy
sequences of rational numbers∗. Imagine how cumbersome it would be to try to prove the
distributive law for real numbers, if one were to use decimal representations to actually
define R!

Let us motivate the definition of a free group by observing that the elements of X play
the same role in the free group F = 〈X〉, as that played by a basis of a vector space: the
elements of the subset X ⊂ F generate F , but there are no nontrivial relations between the
elements of this subset. Our definition of a free group will in fact mimic another important
property of a basis of a vector space. Let V be a vector space, and B ⊂ V a basis. Then
every linear transformation ϕ : V → W is uniquely determined by its values on B. This
leads to an equivalent definition of a basis, as follows. (All vector spaces are over the same
field F , by assumption.)

Definition. Let B be a subset of a vector space V . We say that B is a basis of V

if every map ϕ from B to an arbitrary vector space W , has a unique extension to a
linear transformation ϕ̂ : V → W .

This is equivalent to the standard definition of a basis. Here, now, is a definition of a free
group:

Definition. Let X be a subset of a group F . We say that F is free on X if every
map ϕ from X to an arbitrary group G, has a unique extension to a homomorphism
ϕ̂ : F → G.

∗ One must identify Cauchy sequences of rationals having the same limit; so actually a
real number is represented as an equivalence class of Cauchy sequences of rationals. As an
alternative, one can use the easier approach of Dedekind cuts; but this approach relies heavily
on the total ordering of Q and so is not a typical approach to completion of a metric space.
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(Note: Although every vector space has a basis, by Zorn’s Lemma, not every group is free!
The point is that while every group has a set of generators, it is not always possible to
find a set of ‘independent’ generators. The subject of group presentations will resolve this
issue.)

While this naturally mimics our definition of a basis, it raises two problems. One is
that for a given set X, we need to show that there exists a group which is free on X.
(This is however not hard; just use the construction given above! Take F to be the set of
words constructed from the set of symbols X, and show that F has the required property.)
Another is to prove uniqueness (up to isomorphism). But this can be shown without
much difficulty; and so one can then speak of the free group on X, denoted henceforth by
〈X〉. All important properties of free groups follow from the defining property, and the
construction using words over X takes a secondary place in our minds.

We refer to the defining property of a free group as its universality. We dwell on
this point because the notion of universality is very useful in defining a wide range of
objects (tensor products being a good example), far beyond our immediate goals. The
group F = 〈X〉 is the universal domain for all homomorphisms defined on a set of |X|
generators.

There is an even more useful formulation of the definition of a free group, as follows.
(This is the definition we will actually use!)

Definition. Let ι : X → F be a map from a set X to a group F . We say F is free on
X if for every map ϕ from X to an arbitrary group G, there is a unique homomorphism
ϕ̂ : F → G such that the following diagram commutes:

X

F G
ϕ̂

ι ϕ
.................................................................... .........

.....

...............................................................
.....
..............

................ ..............................................

The commutativity of the diagram means that ϕ̂ ◦ ι = ϕ. It is not hard to see that the
uniqueness of ϕ̂ in general, requires that ι be one-to-one; so we may identify X with its
image in F . So this definition is equivalent to the previous formulation of freeness.

To prove uniqueness of F , suppose the maps ι : X → F and ι̃ : X → ˜F both satisfy
the conditions of the definition. Then there exist maps α and β making the following
diagram commute:

X

F ˜F F
α β

ι ι
ι̃

................................................................................................... ...........
...

................................................................................................
...

..............

.......................................................
.....
.........
.....

................ .............. ................ .................................................. ....................................
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Now we ask for a map indicated by ‘?’, which makes the following diagram commute:

X

F F
?

ι ι
.................................................................... .........

.....

...............................................................
.....
..............

................ ..............................................

Two candidates are β ◦ α, and the identity map on F . Since F is free on X, this forces
β ◦ α to be the identity on F . A similar argument shows that α ◦ β : ˜F → ˜F is also the
identity. So the homomorphisms α and β are in fact isomorphisms, inverse to each other.
In other words, ˜F ∼= F by an isomorphism which identifies the embedded copies of X in
these two groups. Our proof of uniqueness is complete.

Observe the advantage of the new formulation of ‘free’, evident in the latter proof; it
allowed us to embed X simultaneously in two different groups. This example (in which
the terminology of ‘subset’ was rephrased in the language of maps) illustrates the modern
approach of topos theory, or the theory of topoi (‘topoi’ is the plural of ‘topos’). In the
standard approach, one constructs all of mathematics from sets; for example a function
f : A → B is viewed as a subset of A × B (so f is a set of ordered pairs). In turn, one
constructs ordered pairs of elements (a, b) ∈ A×B as sets by defining (a, b) = {{a}, {a, b}}.
In this way all of mathematics is reduced to set theory (in a somewhat ad hoc manner, but
one that seems to work). A perspective of topos theory is to turn things around by making
functions the basic notions (not expressible in terms of any simpler notions), and defining
notions of ‘set’, ‘subset’, ‘Cartesian product’, etc. in terms of functions. ’Nuff said.
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