
Applications of Logic to Field Theory

The following supplement to Cameron’s book is taken largely from Model Theory: An

Introduction by David Marker.

The language of fields (as the language of rings) includes two constants, 0 and 1;

and two binary operations, ‘+’ and ‘×’. In a nutshell, a field is a commutative ring with

multiplicative identity, in which every nonzero element has a multiplicative inverse. Field

theory may be defined using first order axioms as follows:

(∀x)(∀y)(x+ y = y + x)

(∀x)(∀y)(∀z)((x+ y) + z = x+ (y + z))

(∀x)(x+ 0 = x)

(∀x)(∃y)(x+ y = 0)

(∀x)(∀y)(x× y = y × x)

(∀x)(∀y)(∀z)((x× y)× z = x× (y × z))
(∀x)(∀y)(∀z)((x× (y + z)) = (x× y) + (x× z)))
(∀x)(1× x = x)

(¬(0 = 1))

(∀x)((x = 0) ∨ ((∃y)(x× y = 1)))

It would be better to write α(x, y) and µ(x, y) as formal symbols in place of ‘x + y’ and

‘x × y’ respectively, to maintain a distinction between the syntax and semantics of field

theory; but in the interest of readability, we use ‘+’ and ‘×’, and proceed with caution. We

further abbreviate x× y as xy; also abbreviate xx, (xx)x, ((xx)x)x, . . . as x2, x3, x4, etc.

(although exponentiation is not strictly part of our formal language). The commutative and

associative laws, together with the usual convention that multiplication takes precedence

over addition, allows us to suppress many of the usual parentheses; thus for example,

x2 + a1x+ a0 is an abbreviation for ((x× x) + (a1 × x)) + a0 . From the axioms, we may

prove that 0x = 0 for all x, so there is no need to add an axiom stating this.

A field F is algebraically closed if every monic polynomial in a single indeterminate,

having coefficients in F , has a zero (i.e. root) in F . The theory of algebraically closed fields

is axiomatized using the list of ten field theory axioms above, together with the infinite

list of axioms

(∀a0)(∃x)(x+ a0 = 0)
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(∀a0)(∀a1)(∃x)(x2 + a1x+ a0 = 0)

(∀a0)(∀a1)(∀a2)(∃x)(x3 + a2x
2 + a1x+ a0 = 0)

(∀a0)(∀a1)(∀a2)(∀a3)(∃x)(x4 + a3x
3 + a2x

2 + a1x+ a0 = 0)

etc. . . .

By the Fundamental Theorem of Algebra, the field C of complex numbers is algebraically

closed. More generally, start with any field F , and let F be the set of all roots of poly-

nomials of the form xn + an−1x
n−1 + · · · + a1x + a0 with ai ∈ F and n > 0. (These

roots exist in some extension of F ; we won’t worry about the details here.) Then F is a

field. It is the smallest algebraically closed field containing F , and so is called the algebraic

closure of F . For example, the algebraic closure of R is R = C. If F is countable (i.e.

finite or countably infinite), then there are only countably many polynomials over F , so

the field F is countably infinite. In particular, the subfield Q ⊂ C is algebraically closed

with |Q| = ℵ0. Since |C| = 2ℵ0 , the fields Q and C are not isomorphic.

Let F be a field. If there exists a positive integer n such that

1 + 1 + · · ·+ 1︸ ︷︷ ︸
n

= 0

in F , then the smallest such n is the characteristic of F . (If no such n exists, then we

say that the characteristic of F is zero.) If F has characteristic n > 0, then it is easy

to see that the characteristic of F is prime. (For example, if 1 + 1 + 1 + 1 + 1 + 1 = 0

then (1 + 1)(1 + 1 + 1) = 0 so either 1 + 1 = 0 or 1 + 1 + 1 = 0.) If p is prime, then the

integers mod p form a field Fp = {0, 1, 2, . . . , p−1} forms a field of characteristic p. The

fields Q, R, C and Q have characteristic 0. The algebraic closure Fp is algebraically closed

of characteristic p. Note that in a field of prime characteristic p,

x+ x+ · · ·+ x︸ ︷︷ ︸
p

= ( 1 + 1 + · · ·+ 1︸ ︷︷ ︸
p

)x = 0x = 0

for all x.

The theory of algebraically closed fields of characteristic p has a countable set of first

order axioms ACF∪{ψp} where ACF consists of the axioms of field theory plus the axioms

for ‘algebraically closed’; and ψp is the statement

( 1 + 1 + · · ·+ 1︸ ︷︷ ︸
p

= 0).

The theory of algebraically closed fields of characteristic 0 has a countable set of first order

axioms ACF ∪Ψ0 where

Ψ0 = {(¬ψ2), (¬ψ3), (¬ψ5), (¬ψ7), (¬ψ11), . . .}.

The following categoricity theorem (see Marker) will not be required here.
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Theorem. ACF∪Ψ0 is uncountably categorical. That is, if κ is uncountable, then any two

algebraically closed fields of characteristic zero and cardinality κ are isomorphic. Similarly,

for each prime p, ACF ∪ {ψp} is uncountably categorical.

Thus, for example, C is the unique (up to isomorphism) algebraically closed field

of characteristic zero having cardinality 2ℵ0 . To see that ACF ∪ Ψ0 is not countably

categorical, note that Q and Q(x) are nonisomorphic countable algebraically closed fields

of characteristic zero. Here Q(x) is the field consisting of all rational functions in x with

rational coefficients, i.e. the set of all expressions f(x)/g(x) where f(x) and g(x) are

polynomials with rational coefficients, and g(x) has at least one nonzero coefficient. Recall

that Q(x) is the algebraic closure of Q(x).

Let us briefly review some notation. If M is a structure, then M � φ says that the

statement φ is true in M . If Σ is a set of sentences, then Σ � φ says that φ is true in

every model of Σ, whereas Σ ` φ says that φ is provable from Σ. By the Soundness and

Completeness Theorem for First Order Logic, the latter two conditions are equivalent:

Σ � φ iff Σ ` φ.

Let φ be a statement in the language of fields. Then

C � φ iff ACF ∪Ψ0 � φ iff ACF ∪Ψ0 ` φ.

That is, φ holds in C, iff φ holds in every algebraically closed field of characteristic zero,

iff φ is provable from the axioms ACF ∪Ψ0 . Similar statements hold for each prime p:

Fp � φ iff ACF ∪ {ψp} � φ iff ACF ∪ {ψp} ` φ.

That is, φ holds in Fp, iff φ holds in every algebraically closed field of characteristic p, iff

φ is provable from the axioms ACF∪{ψp}. See Marker’s book for details and proofs. The

connection between the characteristic zero case and the case of positive characteristic, is

provided by the following.

Theorem (Lefschetz Principle). Let φ be a statement in the language of fields. Then

ACF ∪Ψ0 ` φ iff ACF ∪ {ψq} ` φ for all sufficiently large primes q.

Proof. Suppose ACF ∪ Ψ0 ` φ, and consider a proof of φ from ACF ∪ Ψ0 = ACF ∪
{(¬ψ2), (¬ψ3), (¬ψ5), . . .}. Only finitely many of the statements (¬ψp) are used in such a

proof; so there exists a positive integer N such that ACF ∪ {(¬ψp) : p < N} ` φ. For all

primes p, q satisfying p < N 6 q, we have ψq ` (¬ψp) and so

ACF ∪ {ψq} ` φ.
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Conversely, suppose ACF ∪ {ψq} ` φ for all primes q > N . Suppose further that

ACF ∪Ψ0 6` φ ;

we seek a contradiction. By the remarks above, φ does not hold in C, so (¬φ) holds in C,

which means that (¬φ) is provable from

ACF ∪Ψ0 = ACF ∪ {(¬ψ2), (¬ψ3), (¬ψ5), . . .}.

A proof of φ from ACF ∪ {(¬ψ2), (¬ψ3), (¬ψ5), . . .} uses only finitely many of the axioms

(¬ψp), so there exists N such that

ACF ∪ {(¬ψp) : p < N} ` φ.

For any primes p, q satisfying p < N 6 q, we have ψq ` (¬ψp), and so ACF∪{ψq} ` φ.

We have the following remarkable application, first proved using mathematical logic

(although an analytic proof was later found by Rudin). A function f : Cn → Cn is

a polynomial map if it is expressible as an n-tuple of polynomials in n variables with

complex coefficients, i.e.

f(z1, z2, . . . , zn) = (f1(z1, . . . , zn), f2(z1, . . . , zn), . . . , fn(z1, . . . , zn))

where each fi(z1, . . . , zn) is a polynomial in z1, z2, . . . , zn with complex coefficients.

Theorem (Ax, 1968; Grothendieck, 1966). If a polynomial map f : Cn → Cn is one-to-

one, then f is onto.

Proof. Suppose that, to the contrary, a polynomial map f : Cn → Cn is one-to-one but

not onto; we will obtain a contradiction. Here n is fixed. We will illustrate the case n = 2;

for any larger fixed values of n, the proof is similar. We have f(z, w) = (f1(z, w), f2(z, w))

where each fi is a polynomial of degree at most d, say. Again we will illustrate here the

case d = 2, although the same idea works for each fixed positive value of d. In the special

case under consideration,

f1(z, w) = az2 + bzw + cw2 + dz + ew + g

f2(z, w) = hz2 + izw + jw2 + kz + `w +m
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for some constants a, b, . . . ,m ∈ C. Consider the following statement φ in the language of

fields:

(∃a)(∃b) · · · (∃m)

(((∀z1)(∀w1)(∀z2)(∀w2)

(((az21+bz1w1+cw2
1+dz1+ew1+g = az22+bz2w2+cw2

2+dz2+ew2+g)

∧ (hz21+iz1w1+jw2
1+kz1+`w1+m = hz22+iz2w2+jw2

2+kz2+`w2+m))

→ ((z1 = z2) ∧ (w1 = w2)))


“f is
one-to-one”

∧
(∃u1)(∃u2)(∀z)(∀w)

(¬((az2+bzw+cw2+dz+ew+g = u1)

∧ (hz2+izw+jw2+kz+`w+m = u2)))

 “f is
not onto”

By hypothesis, φ holds in C, so ACF ∪ Ψ0 ` φ. By the Lefschetz Principle, for all suffi-

ciently large primes q, we have ACF∪{ψq} ` φ, and so φ holds in Fq. Let a, b, . . . ,m ∈ Fq

such that the polynomial map f : Fq
2 → Fq

2
, as above, is one-to-one but not onto.

Also let u1, u2 ∈ Fq , as above, such that (u1, u2) is not in the image of f . All values

a, b, . . . ,m, u1, u2 ∈ Fq are roots of polynomials with coefficients in Fq and so lie in some

finite extension Fqr ⊇ Fq where r > 1. Restricting f to the finite field Fqr gives a map

F2
qr → F2

qr which is one-to-one but not onto. This is impossible for a map from a finite set

(of cardinality q2r) to itself. This gives the required contradiction.

A more elementary application of the Lefschetz Principle is the following. Consider a

large linear system with integer coefficients:

Ax = b

where A is an m × n integer matrix, b ∈ Zm. We ask whether there is a solution x ∈
Qn. In certain cases, solving this system over Q can lead to exceedingly ugly fractions;

the intermediate steps in such a computation may actually place such demands on our

computational resources as to exceed the available memory. In such cases, we may instead

look for a ‘mod p’ solution x ∈ Fn
p for a suitable large prime p, where arbitrary precision

arithmetic is no longer required. The connection between solvability over Q, and solvability

over Fp, is expressed as follows.
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Theorem. Let A be an m× n integer matrix, and let b ∈ Zm.

(i) If the system Ax = b has a solution x ∈ Qn, then the system has a ‘mod p’ solution

x ∈ Fn
p for every sufficiently large prime p.

(ii) If the system Ax = b has no solution x ∈ Qn, then for every sufficiently large prime

p, there is no ‘mod p’ solution x ∈ Fn
p .

This result asserts that it is impossible for the system Ax = b to be solvable for an

infinite set of primes p, and also insolvable for a (complementary) infinite set of primes p.

By taking the prime p large enough, checking for solutions over Fp (which is easier, since

only bounded precision arithmetic is required) allows us to determine whether the solution

is solvable over Q. A proof of this result is not hard, using available tools from linear

algebra (using, for example, the theory of Smith normal forms). However, a quick proof

follows from the Lefschetz Principle. Namely, if the system has a solution in characteristic

zero, then for all sufficiently large p, it has a solution over Fp ; and from this it is easy to

see that there is a solution over Fp . The converse follows similarly.
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