

Fibonacci Numbers II (Handout January 25, 2013)

We investigate more closely the Fibonacci sequence. We obtain a new proof of a result we have already seen—the closed formula for F_n .

As before, we define the Fibonacci sequence recursively by

$$F_n = \begin{cases} 1, & \text{if } n = 0 \text{ or } 1; \\ F_{n-1} + F_{n-2}, & \text{if } n \ge 2. \end{cases}$$

It is convenient to extrapolate backwards using the recurrence formula to obtain $F_{-1} = 0$, $F_{-2} = 1$, $F_{-3} = -1$, $F_{-4} = 2$, etc. From the recurrence relation for F_n , we deduce the matrix equation

$$\begin{bmatrix} F_{n+1} \\ F_n \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} F_n \\ F_{n-1} \end{bmatrix},$$

valid for all $n \ge 0$. If we denote $v_n = \begin{bmatrix} F_n \\ F_{n-1} \end{bmatrix}$ and $A = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$, then the latter recurrence may be expressed succinctly as

$$v_{n+1} = Av_n \quad \text{for all } n \ge 0.$$

This clearly yields

$$v_n = Av_{n-1} = A^2 v_{n-2} = \dots = A^n v_0.$$

Fortunately, it is easy to calculate A^n by first diagonalizing. Since A is a symmetric real matrix, it has two real eigenvalues which are the roots of the characteristic polynomial

$$\det(xI - A) = \begin{vmatrix} x - 1 & -1 \\ -1 & x \end{vmatrix} = x^2 - x - 1.$$

As we have seen, the roots of this polynomial are

$$\alpha = \frac{1 + \sqrt{5}}{2}$$
 and $\beta = \frac{1 - \sqrt{5}}{2}$.

For each eigenvalue $\lambda \in \{\alpha, \beta\}$ we find a corresponding eigenvector v by solving the linear system $Av = \lambda v$. We obtain eigenvectors $\begin{bmatrix} \alpha \\ 1 \end{bmatrix}$ and $\begin{bmatrix} \beta \\ 1 \end{bmatrix}$ for the eigenvalues α and β , respectively. The change-of-basis matrix $B = \begin{bmatrix} \alpha & \beta \\ 1 & 1 \end{bmatrix}$ is obtained by taking eigenvectors as its columns. We compute the inverse matrix $B^{-1} = \frac{1}{\sqrt{5}} \begin{bmatrix} 1 & -\beta \\ -1 & \alpha \end{bmatrix}$. The diagonal form for A

is the diagonal matrix of eigenvalues $D = \begin{bmatrix} \alpha & 0 \\ 0 & \beta \end{bmatrix}$. We have successfully diagonalized A as $B^{-1}AB = D$, i.e.

$$A = BDB^{-1} = \frac{1}{\sqrt{5}} \begin{bmatrix} \alpha & \beta \\ 1 & 1 \end{bmatrix} \begin{bmatrix} \alpha & 0 \\ 0 & \beta \end{bmatrix} \begin{bmatrix} 1 & -\beta \\ -1 & \alpha \end{bmatrix}.$$

This expression allows us to explicitly determine powers of A using $B^{-1}B = I$, as in the example

$$A^{3} = (BDB^{-1})(BDB^{-1})(BDB^{-1}) = BDDDB^{-1} = BD^{3}B^{-1}.$$

The same reasoning shows that in general,

$$A^{n} = BD^{n}B^{-1} = \frac{1}{\sqrt{5}} \begin{bmatrix} \alpha & \beta \\ 1 & 1 \end{bmatrix} \begin{bmatrix} \alpha^{n} & 0 \\ 0 & \beta^{n} \end{bmatrix} \begin{bmatrix} 1 & -\beta \\ -1 & \alpha \end{bmatrix}$$
$$= \frac{1}{\sqrt{5}} \begin{bmatrix} \alpha^{n+1} - \beta^{n+1} & \alpha\beta^{n+1} - \alpha^{n+1}\beta \\ \alpha^{n} - \beta^{n} & \alpha\beta^{n} - \alpha^{n}\beta \end{bmatrix}$$

for all $n \ge 0$. Observe that $v_0 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and so $v_n = A^n \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, which is just the first column of A. This yields the identity

$$F_n = \frac{\alpha^{n+1} - \beta^{n+1}}{\sqrt{5}}$$

our second proof of this fact. One of the lessons here is that two proofs are better than one (at least from a pedagogical viewpoint).

Homework #1 Due Friday, February 1, 2013

Please refer to the course syllabus for general instructions on completing and submitting homework.

Prove that the Fibonacci numbers satisfy the identity $F_n^2 = F_{n+1}F_{n-1} + (-1)^n$ for all $n \ge 1$

- (a) by induction, using the recurrence relation $F_{n+1} = F_n + F_{n-1}$; and
- (b) directly, using a closed formula for F_n .

Note that I am asking you to give two proofs of one result.